Assessments of Provincial Infant and Old-age Mortality in China’s 2010 Population Census

5th HMD Symposium, Berlin, May 15, 2019

Cheng Lia, b Hong Mia

a. School of Public Affairs, Zhejiang University
b. School of Demography, Australia National University
Data source for mortality

- Population census (every 10 years in years ending in 0 since 1982)
- The 1% population sample survey (the inter-censal years ending in 5 since 1990)
- The annual 1‰ sample survey on population changes (since 1983)
- Maternal and Child Mortality Surveillance System (MCMSS)
- Disease Surveillance Points System (DSP)
Accessibility

- Census and the 1% population sample survey are published in monographs.
- The annual 1‰ sample survey is published in the demographic yearbook.
- MCMSS: detail data is not public accessible, aggregated data is published in “China Health and Family Planning Yearbook”.
- DSP: Application needed.
Data quality of each source

- MCMSS: most reliable data source of China maternal mortality level. Its accuracy is checked by a critical assessment. (Gan, Hao et al. 2014)
- DSP: the coverage of infant deaths remains problematic, and as might be expected, is lower than the coverage of adult deaths. (Yang, Hu et al. 2005)
- Population Census: varying with years.
Data quality of each source

1990 census: underreporting exists infant and senior age groups deaths, biasing in mortality estimates downward (Zhang and Li, 1997)

2000 census: There is undercount of population deaths, infants and children usually suffer most (S. Li & Sun, 2003)

2010 census: serious underreporting problems exist in infant and old-age death (Gu et al., 2016; Hu, Wang, & Yu, 2015)
Aim

- Less studies concentrate on the analysis of the quality of infant and old-age mortality data in province perspective.
- This research re-estimated infant and old-age morality for China’s 31 provinces, municipalities and autonomous regions in 2010 census and analyzed the underreporting on the basis of three-parameter model life table (N. Li, Mi, Gerland, Li, & Sun, 2018)
Reasons for mortality underestimate in census

- **Infant mortality:** The implementation of the one child policy.
- **Old-age mortality:** 1. Age overstatement and using the nominal age to count the age, which biasing mortality estimates of census in downwards at old ages (Preston, Elo and Stewart, 1999); 2. Defrauding the pensions and other social welfare. 3. The ancestor worship and the taboo of death and dying in Chinese culture (Hsu, O'Connor and Susan Lee, 2009).
Data and method

- The input parameters of three-parameter MLT: q_0, q_{15}, q_{60}.
- The international data for the analysis of the relationship between infant and old-age mortality rates and development levels, and then, for evaluate the modified values.
Data and method

 Defect: non-sex-specific data only.

 The correlation between non-sex-specific and sex-specific concluded from GBD 2013 Neonatal, Infant, and Under-5 Mortality (GBD 2013, 2014)

\[
\text{logit}(5q_0) = \begin{cases}
-0.01626 + 1.01639 \cdot \text{logit}(5q_0^B), & \text{female} \\
0.01634 + 0.98697 \cdot \text{logit}(5q_0^B), & \text{male}
\end{cases}
\]

\[
5q_0^M = \left(5q_0^B - c_F \cdot 5q_0^F \right) / c_M
\]
Data and method

- Adult mortality $45q_{15}$: census data
- Mortality between 60-74 $15q_{60}$ is re-estimated by General Growth Balance Method open to migration (Bhat, 2002), for migration happening in old-age (Tong & Piotrowski, 2012; Dou & Liu, 2017).

$$\frac{N(x)}{N(x+)} - r(x+) + \frac{NM(x+)}{N(x+)} = n + K \cdot \frac{D^*(x+)}{N(x+)}$$

K is taken as the average of the adjustment factor for the population at age 60 and over to preliminarily correct province-specific $15q_{60}$. If $K>1$, then let $K=1$
Data and method

- The development is measured by Socio-demographic Index (SDI) from GBD 2016 SDI (Global Burden of Disease Collaborative Network, 2017).
- The international mortality data from GBD 2017 Life Tables (Global Burden of Disease Collaborative Network, 2018).
- The relationship between SDI and mortality rates are fitted by Loess regression.
- The root-mean-squared deviation (RMSD):

 \[RMSD = \sqrt{\frac{\sum_{i=1}^{n}(q_i^m - q_i^e)^2}{n}} \]
Data and method

• Three-parameter model life table

The two-parameter MLT (Wilmoth et al., 2012) can be augmented to fit also the observed old-age mortality, by adding a constant to a_x at ages older than 60 (N. Li, 2014).

$$
\ln (\hat{m}_x) = \hat{a}_x + b_x \cdot \ln (5q_0) + c_x \cdot \left[\ln (5q_0) \right]^2 + \nu_x \cdot k
$$

$$
\hat{a}_x = \begin{cases}
 a_x, & x < 60 \\
 a_x + \ln \left[\frac{\ln (1 - 15\hat{q}_{60})}{\ln (1 - 15q_{60})} \right], & x \geq 60
\end{cases}
$$

$15q_{60}$ is calculated by the two-parameter MLT.
Recompiling life tables

- The $1m_0$ and $5m_x$ ($x=60, 65, \ldots, 85$) calculated from three-parameter model life table will be employed to replace the original data tabulated on the census.
- Old-age mortality: $30q_{60}$
- The reason for age restriction of 60 to 85: The debate about “mortality crossover” in the age 90+, which is the main reason? Bad data, (Coale and Kisker, 1986) or “mortality screen” due to heterogeneity? (Zeng and Vaupel, 2003)
Modification for mortality data

Infant mortality
Modification for mortality data

<table>
<thead>
<tr>
<th>RMSD</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCMD</td>
<td>0.0102</td>
<td>0.0078</td>
</tr>
<tr>
<td>Hu, Wang & Yu (2015)</td>
<td>0.0130</td>
<td>0.0092</td>
</tr>
<tr>
<td>Census Value</td>
<td>0.0206</td>
<td>0.0155</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Both (%)</th>
<th>Male (%)</th>
<th>Female (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010 Census</td>
<td>3.80</td>
<td>3.72</td>
<td>3.91</td>
</tr>
<tr>
<td>DCMD</td>
<td>13.14</td>
<td>14.22</td>
<td>11.86</td>
</tr>
<tr>
<td>CHFPY (2017)</td>
<td>13.1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>UN IGME</td>
<td>13.6</td>
<td>14.5</td>
<td>12.6</td>
</tr>
<tr>
<td>IHME</td>
<td>13.87</td>
<td>15.00</td>
<td>12.51</td>
</tr>
<tr>
<td>WHO</td>
<td>13.6</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>United States Census Bureau</td>
<td>13.6</td>
<td>13.3</td>
<td>13.8</td>
</tr>
</tbody>
</table>

CHFPY: China Health and Family Planning Yearbook
Modification for mortality data

Old-age mortality

<table>
<thead>
<tr>
<th></th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMSD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modified</td>
<td>0.0359</td>
<td>0.0426</td>
</tr>
<tr>
<td>Census</td>
<td>0.0621</td>
<td>0.0867</td>
</tr>
</tbody>
</table>
Analysis for underestimate

Underestimate rate of infant mortality
Analysis for underestimate

Underestimate rate of old-age mortality
The provinces with developed economy and urbanization locate mainly in the eastern region where the quality of medical staff, the registration system and living conditions are better than those in other regions (Yang et al., 2005)

The main population living the eastern, south-central and northern regions belongs to Han Chinese, while the southwestern and northwestern regions are the major inhabitation of ethnic minorities.
Summary

• The average underestimate rate of infant death is 73.85% for male and 67.07% for female; and the infant mortality underestimate in the east and southwest regions is less severe than that in other four regions.

• For the old ages between 60–89 years, the underestimate of male mortality is lower than that of female. The eastern, south central and northern provinces have old-age mortality data with better quality than southwestern, northwestern and northeastern provinces.

• This research utilized developed countries’ experiences to re-estimate China’s provincial q_0 and q_{60}, which means “what’s the provincial levels of infant and old-age death are under the condition of developed countries’ situation.”
Acknowledgements

I would like to appreciate Vladimir Canudas-Romo, Zhongwei Zhao and Collin Payne in Australia National University, Australia for their helpful recommendations.
Reference

Reference

Reference