Education, cognitive ability and Cause-Specific Mortality: A structural approach

Govert Bijwaard1 \hspace{1cm} Mikko Myrskylä2 \hspace{1cm} Per Tynelius3

1NIDI-KNAW/University of Groningen \hspace{1cm} 2Max Planck Institute for Demographic Research \hspace{1cm} 3Karolinska Instituut

HMD, Berlin, May 22–23, 2017
Motivation

- **Education** is negatively associated with mortality for most causes of death.

- Standard Cox method:
 - Interpretation of coefficients difficult in competing risks
 - Ignores Cause-specific hazard rates are interdependent
 - Does not provide importance of cause

- Education and mortality both depend on cognitive ability

- Proposed solution:
 - Focus on **months lost** due to specific cause of death
 - **Structural model** that derives cognitive ability from IQ-scores

- Using Swedish conscription data 18-63 year
Causal impact of education on mortality

- Recent results deriving from natural experiments and from twin studies in education suggest that causal effect of education on health is small or even absent.

- Suggest an important role for confounding factors, such as cognitive ability.

- Educational attainment and cognitive ability strongly correlated. Difficult to disentangle.

- Using structural models: models interdependence. Half of mortality disparity across education levels due to selection of the healthier into higher education (Bijwaard et al. 2015a,b).

- Studies on educational differences in cause-specific mortality ignore endogeneity.
Our contribution

Estimate the education-mortality gradient for major causes of death.

Contribution is threefold:

1. Causal effect of education on months-lost due to specific cause
2. Account for endogeneity of education attainment
3. Derive selection effect both on observed and unobserved characteristics (cognitive ability)
Swedish Military examination Data

Examinations for military service men born 1951-1960: 446,545 individuals.

- Linked to parental info: Detailed info on individual demographic and socioeconomic characteristics, including parental SES and education

- Intelligence test: IQ in 9 categories

- Education classified in 4 levels:
 primary education, Secondary education (2 years), Full Secondary education (3 years) and, Higher education

- Linked to death registers:
 Mortality by cause of death, till end 2012.
 neoplasms, CVD, external causes, and other causes.
Descriptive statistics: distribution cause of death

<table>
<thead>
<tr>
<th></th>
<th>primary</th>
<th>Sec edu (2yr)</th>
<th>Sec edu (3yr)</th>
<th>Higher</th>
</tr>
</thead>
<tbody>
<tr>
<td># of deaths</td>
<td>8,770</td>
<td>9,451</td>
<td>2,506</td>
<td>3,829</td>
</tr>
<tr>
<td>deaths per 1000</td>
<td>90.8</td>
<td>59.1</td>
<td>45.3</td>
<td>28.4</td>
</tr>
<tr>
<td>causes of death</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neoplasm</td>
<td>18.2</td>
<td>14.0</td>
<td>13.1</td>
<td>10.0</td>
</tr>
<tr>
<td>Cardiovascular diseases</td>
<td>18.4</td>
<td>13.9</td>
<td>10.4</td>
<td>6.3</td>
</tr>
<tr>
<td>External causes</td>
<td>31.5</td>
<td>16.5</td>
<td>11.7</td>
<td>6.8</td>
</tr>
<tr>
<td>Other causes</td>
<td>22.6</td>
<td>14.7</td>
<td>10.1</td>
<td>5.3</td>
</tr>
</tbody>
</table>
Cumulative incidence curves by cause of death and education level

Cumulative incidence curves neoplasm

Cumulative incidence curves CVD

Cumulative incidence curves External causes

Cumulative incidence curves Other or unknown
Cox hazard ratios, adjacent education

<table>
<thead>
<tr>
<th></th>
<th>Sec edu (2 yr)</th>
<th>Sec edu (3 yrs)</th>
<th>Higher</th>
</tr>
</thead>
<tbody>
<tr>
<td>neoplasm</td>
<td>0.77**</td>
<td>0.88**</td>
<td>0.79**</td>
</tr>
<tr>
<td>CVD</td>
<td>0.72**</td>
<td>0.73**</td>
<td>0.63**</td>
</tr>
<tr>
<td>external causes</td>
<td>0.51**</td>
<td>0.69**</td>
<td>0.59**</td>
</tr>
<tr>
<td>other causes</td>
<td>0.59**</td>
<td>0.64**</td>
<td>0.54**</td>
</tr>
</tbody>
</table>

**p < 0.01
Inference in competing risks model

- **Cause-specific Cox hazard models**, $\lambda_k(t)$
 Difficult interpretation if one covariate appears in several competing hazards and assumes independence of causes of death.

- **Cumulative incidence**: probability dying from cause k before t

\[
F_k(t) = \int_0^t \lambda_k(s)S(s) \, ds
\]

Fine-Gray model sub-distribution hazard also difficult to interpret

- **Months lost due a specific cause**, (from age 18 till age 63)

\[
L_k(18, 63) = \int_{18}^{63} F_k(s) \, ds
\]
Structural model of education and cause-specific mortality

Extension of structural model of Bijwaard et al. (2015a,b)

Model the interdependence between education and cause-specific mortality, because both are affected by cognitive ability.

1. **Educational attainment** D
 Ordered probit model depending on observed characteristics and latent cognitive ability, θ

2. **Potential cause-specific hazard** λ
 Depending on education attained and latent cognitive ability: only observe hazards for observed education.
 Proportional Gompertz with shape and scale depending on education and cause of death

3. **Measurement** M
 Measuring (a proxy) of cognitive ability, IQ, depending on observed characteristics and latent cognitive ability
1. Educational gain $G_c(\tau_0, \tau_1)$; Average educational difference in months due cause c
 Educational gain (difference) implied by structural model

2. Selection effect;
 Effect of selecting education: difference with non-parametric estimate $G_{NP,c}(\tau_0, \tau_1)$
 - selection on observables $G_{NP,c}(\tau_0, \tau_1) - G_{sep,c}(\tau_0, \tau_1)$
 with $G_{sep,c}(\tau_0, \tau_1)$ is the educational gain based on a stratified model (ignoring cognitive ability)
 - selection on cognitive ability $G_{sep,c}(\tau_0, \tau_1) - G_c(\tau_0, \tau_1)$
 difference structural model and stratified model
Model estimates of months lost due to specific cause 18-63

Educational gains

1. **Non-parametric estimates**
 Based on the non-parametric estimate of survival, **Kaplan–Meier** and cumulative incidence, **Aalen–Johansen**

2. **Structural model**
 Gompertz hazard models by education level and cause of death, including observed individual characteristics
 Model accounting for (latent) cognitive ability influencing both education and cause-specific hazards.
Non-parametric: Months lost and gain 18–63

The image shows two bar charts. The top chart displays months lost by cause and education level, and the bottom chart shows the gain in months lost by similar categories. The causes include neoplasm, cardiovascular diseases, external causes, and other causes of death. The education levels represented are primary education, secondary education (2 years), full secondary education, and higher. The months lost and gain are quantified in months.
Model estimates of months lost due to specific cause 18-63

1. **Non-parametric estimates**
 Based on the non-parametric estimate of survival, Kaplan–Meier and cumulative incidence, Aalen–Johansen

2. **Structural model**
 Gompertz hazard models by education level and cause of death, including observed individual characteristics
 Model accounting for (latent) cognitive ability influencing both education and cause-specific hazards.
 Structural model: Months lost 18–63

Months lost

- Neoplasm
 - Primary education: 3.5
 - Secondary education (2 years): 2.3
 - Full secondary education: 2.2
 - Other higher education: 1.7

- Cardiovascular diseases
 - Primary education: 2.5
 - Secondary education (2 years): 2.2
 - Full secondary education: 1.8
 - Other higher education: 1.1

- External causes
 - Primary education: 11.3
 - Secondary education (2 years): 4.5
 - Full secondary education: 3.6
 - Other higher education: 2.6

- Other causes of death
 - Primary education: 3.4
 - Secondary education (2 years): 2.4
 - Full secondary education: 1.8
 - Other higher education: 1.2
Structural model: educational gain 18–63

- Secondary education (2 years)
- Full secondary education
- Higher

Gain in months lost:
- Neoplasm: 1.1
- Cardiovascular diseases: 0.3, 0.4, 0.6
- External causes: 0.9, 1.0
- Other causes of death: 1.0, 0.6, 0.7
Structural model versus Cox models

- other causes of death
- Suicide and external causes
- Cardiovascular diseases
- Neoplasm

<table>
<thead>
<tr>
<th></th>
<th>less than 10 years</th>
<th>Structural</th>
<th>Cox</th>
<th>Secondary education (2 years)</th>
<th>Structural</th>
<th>Cox</th>
<th>Secondary education (3 years)</th>
<th>Structural</th>
<th>Cox</th>
<th>University or PhD</th>
</tr>
</thead>
</table>
Summary: Educational gains on cause specific mortality

Developed structural model which accounts for interdependence of education and cause-specific mortality rates.

- **educational gain** in months lost due to specific cause (accounting for **cognitive ability**)
- **Selection effects**: observed and (latent) cognitive ability

Main empirical results: accounting for selection

- Highest educational gain for **primary education**: 9 mo
- Largest gain due **reduction in external causes**: 1–7 mo
 small gains for CVD: < 1 month and neoplasms
- Largest **selection effect** lowest 2 groups: 2 mo
- Largest selection effect for **external causes**
Discussion

- **Months lost** better measure than hazard ratios
 Accounts for interdependence between causes and easy to interpret and **additive measure**

- **Structural model** accounts for interdependence of education and mortality due to cognitive ability
 Ignoring this leads to **underestimate** educational gains for **low educated** and **overestimate** for higher education

Limitations

- Other personal traits might affect education **non-cognitive skills**
 Educational gain is likely to be **upper-bound**

- **Only men**

- **short follow up**: max age 63