4th HMD Symposium

Life Expectancy and Lifespan Equality: A Dynamic Long run Relationship

José Manuel Aburto, Ugofilippo Basellini, Søren Kjærgaard & James W. Vaupel

23rd May 2017
Introduction

- **Background:**
 - Life expectancy at birth (e_0) is one of the most widely used measures to summarize population health.
 - Most countries have improved in this indicator. Record e_0 has steadily increased by 2.5 years every decade.
 - However, it conceals variation in lifespans or **lifespan equality**.
Introduction

- Background:
 - Life expectancy at birth (e_0) is one of the most widely used measures to summarize population health.
 - Most countries have improved in this indicator. Record e_0 has steadily increased by 2.5 years every decade.
 - However, it conceals variation in lifespans or lifespan equality.
- What is lifespan equality?
Introduction

Video:

Background:
- Life expectancy at birth (e_0) is one of the most widely used measures to summarize population health.
- Most countries have improved in this indicator. Record e_0 has steadily increased by 2.5 years every decade.
- However, it conceals variation in lifespans or lifespan equality.

What is lifespan equality?
- Dimension that expresses a fundamental difference in survivorship among individuals.
Introduction

► **Background:**
 ▶ Life expectancy at birth (e_0) is one of the most widely used measures to summarize population health.
 ▶ Most countries have improved in this indicator. Record e_0 has steadily increased by 2.5 years every decade.
 ▶ However, it conceals variation in lifespans or **lifespan equality**.

► **What is lifespan equality?**
 ▶ Dimension that expresses a fundamental difference in survivorship among individuals.
 ▶ It addresses the growing interest in health inequalities and its linkage with social behavior.
Why studying **lifespan equality** is important?

Danish Females

- **e_0**
 - 1945: 67.2
 - 2010: 81.33
- **IQR**
 - 1945: 19.99
 - 2010: 14.66
- **Ω_0**
 - 1945: 89.99
 - 2010: 97.33

Source: HMD 4th HMD Symposium Aburto et al. 2017
Strong association between life expectancy and lifespan equality

Life expectancy (e_0) vs lifespan equality (η)

Pearson correlation coefficient > .95

Period
- 1900–1921
- 1921–1959
- 1960 onwards

Life Expectancy and Lifespan Equality

4th HMD Symposium
Aburto et al. 2017
Life Expectancy and Lifespan Equality
Non-stationary series

Life expectancy

Lifespan equality (η)
If non-stationarity \rightarrow risk of misleading results

Life expectancy (e_0) vs lifespan equality (η)

R squared

Sex
Females
Males
Stochastic properties suggest analyzing both in first differences

Changes in life expectancy and lifespan equality

Period
- 1900−1921
- 1921−1959
- 1960 onwards

R square = 0.704

(Δe₀)
(Δη)

4th HMD Symposium Aburto et al. 2017 Life Expectancy and Lifespan Equality
General idea of the model

Life expectancy (e_0) vs lifespan equality (η)
General idea of the model

Life expectancy (e_0) vs lifespan equality (η)
General idea of the model

Life expectancy \((e_0) \) vs lifespan equality \((\eta) \)

Life expectancy

Lifespan equality

Long term equilibrium
General idea of the model

Life expectancy (e_0) vs lifespan equality (η)

Life expectancy (Japan, Russia)

"Mortality forces" $-\alpha$

"Mortality forces" α

Life Expectancy and Lifespan Equality
General idea of the model

Life expectancy (e_0) vs lifespan equality (η)

"Mortality forces" α

Japan (♀2000)

Russia (♂1994)

"Mortality forces" $-\alpha$
General idea of the model

Life expectancy (e_0) vs lifespan equality (η)

Life expectancy

Lifespan equality

"Mortality forces"

$-\alpha$

$x_\infty \mid t$

"Mortality forces"

α

$\alpha' \sum_{i=1}^{t} \varepsilon_i$

$\beta'x_{1994}$

$\beta'x_{2000}$
Cointegration analysis

Two-dimensional VAR model in its equilibrium correction (VECM) form:

\[
\Delta Z_t = \sum_{i=1}^{k-1} \Gamma \Delta Z_{t-i} + \alpha \beta' Z_{t-1} + \mu + \Psi D_t + \epsilon_t
\]

where:

- \(\Delta \) first difference operator
- \(Z_t \) vector of stochastic variables, \(e_0 \) and \(\eta \)
- \(D_t \) vector of deterministic variables (e.g. linear trends)

Data comes from HMD, over 8 500 lifetables for 44 countries
Lifespan equality measures

Three measures were used:

\[\eta = - \log \left(\frac{- \int_0^\omega \ell(x) \ln \ell(x) dx}{\int_0^\omega \ell(x) dx} \right) = - \log \left(\frac{e^\dagger}{e_0^o} \right), \] \hspace{1cm} (1)

\[\bar{\ell} = - \log \left(1 - \frac{- \int_0^\omega \ell^2(x) dx}{\int_0^\omega \ell(x) dx} \right) = - \log (G), \] \hspace{1cm} (2)

\[cv = - \log \left(\frac{\sqrt{\int_0^\omega (x - e_0^o)^2 f(x) dx}}{\int_0^\omega \ell(x) dx} \right) = - \log \left(\frac{\sigma}{e_0^o} \right), \] \hspace{1cm} (3)

\(\eta \) based on Keyfitz' entropy used in Colchero et al 2016.

\(\bar{\ell} \) a variant of the Gini coefficient.

\(cv \) a variant of the coefficient of variation.
Long run relationship [Johansen’s trace test]
Speed of adjustment towards long term equilibrium

Life expectancy

Lifespan equality

Sex

Females

Males

4th HMD Symposium Aburto et al. 2017 Life Expectancy and Lifespan Equality 17
Include the age dimension Reducing deaths at any age increases e_0; for η, it depends whether deaths occur before or after a^i
Threshold age a^n
Decomposition method

Model of continuous change: analysis based on the assumption that covariates change continuously along an actual or hypothetical dimension. [Horiuchi et al. 2008 Demography; Caswell 2010 Journal of Ecology]

The effect of the i-th age group death rate on the change in e_0 and η from period t to $t + 1$ can be calculated as

$$c_i = \int_{m_i(t)}^{m_i(t+1)} \frac{\partial e_0(t)}{\partial m_i(t)} dm_i(t)$$ \hspace{1cm} (4)

Then we calculated contributions below and above the threshold age to changes in life expectancy and lifespan equality.
Age-specific contributions

Changes below the threshold age

Changes above the threshold age
Summary and conclusions

- Strong association between changes in e_0 and η.
- We found evidence of a long term equilibrium.
- Even if in the short term they diverge from each other, there is a correction mechanism that bring them together again.
- To some extent mortality improvements below threshold age are driving the relationship.
Thanks for your attention.

Comments and/or questions?
Normalized \((\eta = 1)\) long run coefficient for \(e_0\)
Can we talk about *causality*?

- Granger causality \rightarrow Because e_0 and η cointegrate at least Granger causality exists in one direction.[Caution!]
 - Just a potential causality, does not take into account latent variables.
 - Temporal precedence: a cause precedes its effects in time
- Instantaneous causality: test non-zero correlation between error processes of the cause and effect variables.
 In 90% of the cases we reject the $H_0 = \text{no instantaneous causality}$
long run relationship

![Graph showing long run relationship](image)

Measure

- \((1-G)\)
- \(\log(\text{inv}(H))\)
- \(\log(\text{inv}(CV))\)

Distance from 95% critical value

- Latvia
- Israel
- West Germany
- Norway
- Ukraine
- Taiwan
- Canada
- Belarus
- Denmark
- Finland
- Switzerland
- Lithuania
- Denmark
- Russia
- Poland
- Sweden
- New Zealand
- Australia
- UK
- Ireland
- Czech Republic
- Slovakia
- Ireland
- Norway
- Japan
- New Zealand (Non-Maori)
- New Zealand (Maori)
- Iceland
- Spain
- Italy
- U.S.A.
- Portugal
- France
- Austria
- Hungary
- Belgium
- Germany
- Sweden
- New Zealand
- Australia
- Japan
- New Zealand (Non-Maori)
- New Zealand (Maori)
- Iceland
- Spain
- Italy
- U.S.A.
- Portugal
- France
- Austria
- Hungary
- Belgium
- Germany
- Sweden
- New Zealand
- Australia
- Japan
- New Zealand (Non-Maori)
- New Zealand (Maori)
- Iceland
- Spain
- Italy
- U.S.A.
- Portugal
- France
- Austria
- Hungary
- Belgium
- Germany
- Sweden
- New Zealand
- Australia
- Japan
- New Zealand (Non-Maori)
- New Zealand (Maori)
- Iceland
- Spain
- Italy
- U.S.A.
- Portugal
- France
- Austria
- Hungary
- Belgium
- Germany
- Sweden
- New Zealand
- Australia
- Japan
- New Zealand (Non-Maori)
- New Zealand (Maori)
- Iceland
- Spain
- Italy
- U.S.A.
- Portugal
- France
- Austria
- Hungary
- Belgium
- Germany
- Sweden
- New Zealand
- Australia
- Japan
- New Zealand (Non-Maori)
- New Zealand (Maori)
- Iceland
- Spain
- Italy
- U.S.A.
- Portugal
- France
- Austria
- Hungary
- Belgium
- Germany
- Sweden
- New Zealand
- Australia
- Japan
- New Zealand (Non-Maori)
- New Zealand (Maori)
- Iceland
- Spain
- Italy
- U.S.A.
- Portugal
- France
- Austria
- Hungary
- Belgium
- Germany
- Sweden
- New Zealand
- Australia
- Japan
- New Zealand (Non-Maori)
- New Zealand (Maori)
- Iceland
- Spain
- Italy
- U.S.A.
- Portugal
- France
- Austria
- Hungary
- Belgium
- Germany
- Sweden
- New Zealand
- Australia
- Japan
- New Zealand (Non-Maori)
- New Zealand (Maori)
- Iceland
- Spain
- Italy
- U.S.A.
- Portugal
- France
- Austria
- Hungary
- Belgium
- Germany
- Sweden
- New Zealand
- Australia
- Japan
- New Zealand (Non-Maori)
- New Zealand (Maori)
- Iceland
- Spain
- Italy
- U.S.A.
- Portugal
- France
- Austria
- Hungary
- Belgium
- Germany
- Sweden
- New Zealand
- Australia
- Japan
- New Zealand (Non-Maori)
- New Zealand (Maori)
- Iceland
- Spain
- Italy
- U.S.A.
- Portugal
- France
- Austria
- Hungary
- Belgium
- Germany
- Sweden
- New Zealand
- Australia
- Japan
- New Zealand (Non-Maori)
- New Zealand (Maori)
- Iceland
- Spain
- Italy
- U.S.A.
- Portugal
- France
- Austria
- Hungary
- Belgium
- Germany
- Sweden
- New Zealand
- Australia
- Japan
- New Zealand (Non-Maori)
- New Zealand (Maori)
- Iceland
- Spain
- Italy
- U.S.A.
- Portugal
- France
- Austria
- Hungary
- Belgium
- Germany
- Sweden
- New Zealand
- Australia
- Japan
- New Zealand (Non-Maori)
- New Zealand (Maori)
- Iceland
- Spain
- Italy
- U.S.A.
- Portugal
- France
- Austria
- Hungary
- Belgium
- Germany
- Sweden
- New Zealand
- Australia
- Japan
- New Zealand (Non-Maori)
- New Zealand (Maori)
- Iceland
- Spain
- Italy
- U.S.A.
- Portugal
- France
- Austria
- Hungary
- Belgium
- Germany
- Sweden
- New Zealand
- Australia
- Japan
- New Zealand (Non-Maori)
- New Zealand (Maori)
- Iceland
- Spain
- Italy
- U.S.A.
- Portugal
- France
- Austria
- Hungary
- Belgium
- Germany
- Sweden
- New Zealand
- Australia
- Japan
- New Zealand (Non-Maori)
- New Zealand (Maori)
- Iceland
- Spain
- Italy
- U.S.A.
- Portugal
- France
- Austria
- Hungary
- Belgium
- Germany
- Sweden
- New Zealand
- Australia
- Japan
- New Zealand (Non-Maori)
- New Zealand (Maori)
- Iceland
- Spain
- Italy
- U.S.A.
- Portugal
- France
- Austria
- Hungary
- Belgium
- Germany
- Sweden
- New Zealand
- Australia
- Japan
- New Zealand (Non-Maori)
- New Zealand (Maori)
- Iceland
- Spain
- Italy
- U.S.A.
- Portugal
- France
- Austria
- Hungary
- Belgium
- Germany
- Sweden
- New Zealand
- Australia
- Japan
- New Zealand (Non-Maori)
- New Zealand (Maori)
- Iceland
- Spain
- Italy
- U.S.A.
- Portugal
- France
- Austria
- Hungary
- Belgium
- Germany
- Sweden
- New Zealand
- Australia
- Japan
- New Zealand (Non-Maori)
- New Zealand (Maori)
- Iceland
- Spain
- Italy
- U.S.A.
- Portugal
- France
- Austria
- Hungary
- Belgium
- Germany
- Sweden
- New Zealand
- Australia
- Japan
- New Zealand (Non-Maori)
- New Zealand (Maori)
- Iceland
- Spain
- Italy
- U.S.A.
- Portugal
- France
- Austria
- Hungary
- Belgium
- Germany
- Sweden
- New Zealand
- Australia
- Japan
- New Zealand (Non-Maori)
- New Zealand (Maori)
- Iceland
- Spain
- Italy
- U.S.A.
- Portugal
- France
- Austria
- Hungary
- Belgium
- Germany
- Sweden
- New Zealand
- Australia
- Japan
- New Zealand (Non-Maori)
- New Zealand (Maori)
- Iceland
- Spain
- Italy
- U.S.A.
- Portugal
- France
- Austria
- Hungary
- Belgium
- Germany
- Sweden
- New Zealand
- Australia
- Japan
- New Zealand (Non-Maori)
- New Zealand (Maori)
- Iceland
- Spain
- Italy
- U.S.A.