Modeling age-specific mortality by detailed age between 0 and 5 years: Results from a log-quadratic model applied to high-quality vital registration data

Michel Guillot,¹,² Julio Romero Prieto,³ Andrea Verhulst,² Patrick Gerland⁴

¹French Institute for Demographic Studies (INED), ²University of Pennsylvania, ³Banco de la República de Colombia, ⁴United Nations

Funding: Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Grant R01HD090082
Objectives

• Model the shape of the mortality curve between age 0 and 5 years by detailed age group (weeks, months, trimesters, years)
• For predicting a full mortality schedule between 0 and 5 with only 1 or 2 parameters
Significance

• Importance for health policy of examining how the risk of death varies within the 0-5 age range (NNMR, IMR, but also detailed information by days, weeks, and months of age)

• In spite of their importance, age patterns of U5M are difficult to establish in LMICs, due to lack of reliable data

• Use of model life tables (MLT) to address these deficiencies
 • Coale & Demeny, United Nations models
 • Used for estimating IMR on the basis of U5MR

• Drawbacks
 • Only 0 vs. 1-4 as age details; based on limited number of country-years

• Proposed model builds on MLT approach but with new data and finer age granularity
Scope of current model

• Based on high-quality VR countries represented in the Human Mortality Database (HMD)
 • European countries + Australia, Canada, Chile, Israel, Japan, New Zealand and the US
 • Small populations (Iceland, Luxembourg) and Former Soviet bloc countries are excluded
A new mortality database for under-five mortality by detailed age

• Annual distributions of under-five deaths by sex and detailed age (days, weeks, months, trimesters, years)

• Two components:
 • UN database since 1970
 • Archival work for the pre-1970 period

• 22 harmonized age groups: 0d, 7d, 14d, 21d, 28d, 2m, 3m, 4m, 5m, 6m, 7m, 8m, 9m, 10m, 11m, 12m, 15m, 18m, 21m, 2y, 3y, 4y, 5y

• Use of HMD exposure terms for denominator of rates

• Exclusion of a number of country-years for the late 19th – early 20th century due to data quality concerns at early neonatal ages

• Final database for modeling: 1235 country-years, by sex
$n M_x$ vs $q(28d, 5y)$ for each of the first four weeks
Modeling approach: log-quadratic model

• Adapted from Wilmoth et al. (2012)
• Using U5MR (=q(5)) as main explanatory variable
• Using q(x), the cumulative probability of death from birth to age x (x=7d, 14d, ..., 3y, 4y) as response variable

\[\ln[q(x)] = a_x + b_x \ln[q(5)] + c_x \ln[q(5)]^2 + v_x k \]

• q(5) determines overall level of mortality
• k affects the shape of the age pattern (k=0 -> average age pattern)
• \(a_x, b_x, c_x\) estimated via OLS; \(v_x\) via Singular Value Decomposition (SVD)
Effect of varying U5MR on predicted $q(x)$ and nM_x (with $k=0$)
Effect of varying k on predicted $q(x)$ and nM_x (with $U5MR=0.100$)
Fitting the model to data for a given population
(Example: Finland 1933, both sexes)

U5MR is given by the data; k is the solution that minimizes the RMSE of predicted $q(x)$'s.
How does the model fit the entire database? Overall RMSE of predicted q(x)’s:

<table>
<thead>
<tr>
<th>Entry points</th>
<th>Female</th>
<th>Male</th>
<th>Both</th>
</tr>
</thead>
<tbody>
<tr>
<td>q (5y') only</td>
<td>0.04131</td>
<td>0.04238</td>
<td>0.04049</td>
</tr>
<tr>
<td>q (5y') + q (7d)</td>
<td>0.02698</td>
<td>0.02637</td>
<td>0.02491</td>
</tr>
<tr>
<td>q (28d)</td>
<td>0.02408</td>
<td>0.02442</td>
<td>0.02271</td>
</tr>
<tr>
<td>q (3m)</td>
<td>0.02078</td>
<td>0.02086</td>
<td>0.01922</td>
</tr>
<tr>
<td>q (6m)</td>
<td>0.02396</td>
<td>0.02440</td>
<td>0.02269</td>
</tr>
<tr>
<td>q (12m)</td>
<td>0.03399</td>
<td>0.03468</td>
<td>0.03265</td>
</tr>
<tr>
<td>All q(x) values</td>
<td>0.01901</td>
<td>0.01911</td>
<td>0.01771</td>
</tr>
</tbody>
</table>

60-40 Monte Carlo cross validation: 741 life tables used for estimation and 494 for evaluation. Reported values are the mean of the RMSE of predictions based on 10,000 random samples of 494 country-years.
Estimating confidence intervals around predicted $q(x)$ values (France, 1955, both sexes)

- Approach based on variance around the optimal value of k for given population
- Takes into account prediction errors for each age group and the width of each age interval

$$\text{var}(k_i) = \left[\frac{\sum_{x \in X} w(x) \cdot e_i(x) \cdot e_i(x)}{\sum_{x \in X} w(x) \cdot v_x \cdot v_x} - k_i^2 \right]$$
Using the model for indirect estimation

• Model can be used for:
 • Smoothing noisy age schedules
 • Correcting mortality estimates in the presence of age heaping (Romero Prieto, Verhulst and Guillot, 2019)
 • Adjusting mortality data for under-reporting in specific age ranges

• Application: VR data from Jordan (2015)
 • Concerns about quality of the VR neonatal information in that country
 • Model parameters estimated using reported mortality from 28 days to 5 years, i.e., excluding reported mortality at neonatal ages
 • Adjusted values of neonatal, infant and under-five mortality, with 95% CI
Reported vs adjusted neonatal, infant, and under-five mortality in Jordan, 2015, both sexes
Conclusion: strengths

• Log-quadratic model provides more detailed age groups than existing model life tables
• Flexible choice of predictors
• Model fits the historical VR data well
• Jordan example: promising results for correcting incomplete VR data
Conclusion: limitations

• The model’s empirical basis does not include mortality data from low and middle-income countries.

• Model’s applicability goes beyond HMD countries (e.g. Jordan), but model will need to be updated with information from non-HMD countries.

• Compilation of additional sources from developing countries (SRS, HDSS, Cohort studies) under way as part of ongoing R01 project.
nM_x vs $q(28d\rightarrow5y)$ for each of the first four weeks
$n M_x \text{ vs } q(28d->5y)$ for each of the first seven days
$M_0(d)$ vs $q(28d \rightarrow 5y)$ in Switzerland
7M₀(d) vs q(28d→5y) in the DHS