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J.R. Wilmoth, K. Andreev, D. Jdanov, D.A. Glei and T. Ri�e with the assistance of C. Boe, M.
Bubenheim, D. Philipov, V. Shkolnikov, P. Vachon, C. Winant, M. Barbieri1

Introduction to V6 of the Methods Protocol

This version of the Human Mortality Database Methods Protocol (Version 6) introduces two changes
to the way mortality rates and life tables are constructed. First, a new method is implemented to
calculate a0, the mean age at death for children who died in their �rst year of life. This was
motivated by the fact that, in low mortality populations, the Coale and Demeny formula used until
now in the HMD tended to under-estimate a0. Detailed rationale and the equations connecting a0
with infant mortality are provided in the study by Andreev and Kingkade (2015). Implementation
of this method is described in section 7.1 below.

Second, birth-by-month data have been collected and are now used to more accurately estimate
population exposures. Until now, we used the classic approach which assumes that births are
uniformly distributed throughout the calendar year. In the event of a sharp discontinuity in the
monthly distribution of births within a calendar year, this assumption results in the incorrect
estimation of population exposures and induces false cohort e�ects on mortality surfaces when
these surfaces are based on Lexis squares. Within the HMD universe, the non uniform distribution
of births has been most pronounced at the beginning and at the end of the �rst and second World
Wars in many European countries. More details on the new method are provided in section 6 and
Appendix E below.

1This document grew out of a series of discussions held in various locations beginning in June 2000. The �ve
individuals listed as authors wrote the original version and/or have actively contributed to subsequent versions,
including through the development of additional methods. Several others assisted with the creation of this document
through their active participation in meetings and ongoing discussions via email. The authors are fully responsible
for any errors or ambiguities. They thank Georg Heilmann for his assistance with some of the graphs.
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1 Introduction

The Human Mortality Database (HMD) is a collaborative project sponsored by the University of
California at Berkeley (United States) and the Max Planck Institute for Demographic Research
(Rostock, Germany).2 The purpose of the database is to provide researchers around the world with
easy access to detailed and comparable national mortality data via the Internet.3 The database con-
tains original life tables for almost 40 countries or areas, as well as all raw data used in constructing
those tables.4

2The contribution of UC Berkeley to this project is funded in part by a grant from the U.S. National Institute on
Aging. A third team of researchers based at the City University of New York is also working directly on this project.
In addition, the project depends on the cooperation of national statistical o�ces and academic researchers in many
countries.

3The HMD is accessible through either of the following addresses: www.mortality.org and www.humanmortality.de.
4By design, populations in the HMD are restricted to those with data (both vital statistics and census information)

that cover the entire population and that are very nearly complete. Thus, the HMD covers almost all of Europe,
plus Australia, Canada, Japan, New Zealand, Chile, Israel, Hong Kong, Republic of Korea, Taiwan and the United
States. Outside this group,very few countries possess the kind of data required for the HMD. Few other regions and
countries are still being considered for inclusion. In an e�ort to improve access to mortality information for countries
that do not meet the strict data requirements of the HMD, we have also assembled a large collection of life tables
constructed by other organizations or individuals. This collection, known as the Human Lifetable Database (HLD),
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The raw data generally consist of birth and death counts from vital statistics, plus population
counts from periodic censuses and/or o�cial population estimates. Both general documentation
and the individual steps followed in computing mortality rates and life tables are described here.
More detailed information�for example, sources of raw data, speci�c adjustments to raw data, and
comments about data quality�are covered separately in the documentation for each population.

We begin by describing certain general principles that are used in constructing and presenting
the database. Next, we provide an overview of the steps followed in converting raw data into
mortality rates and life tables. The remaining sections (including the Appendices) contain detailed
descriptions of all necessary calculations.

2 General principles

2.1 Notation and terminology for age and time

Both age and time can be either continuous or discrete variables. In discrete terms, a person of age

x (or aged x) has an exact age within the interval [x, x + 1). This concept is also known as age

last birthday. Similarly, an event that occurs in calendar year t (or more simply, in year t) occurs
during the time interval [t, t+ 1). It should always be possible to distinguish between discrete and
continuous notions of age or time by usage and context. For example, the population aged x at time

t refers to all persons in the age range [x, x+ 1) at exact time t, or on January 1st of calendar year
t. Likewise, the exposure-to-risk at age x in year t refers to the total person-years lived in the age
interval [x, x+ 1) during calendar year t.

2.2 Lexis diagram

The Lexis diagram is a device for depicting the stock and �ow of a population and the occurrence
of demographic events over age and time. For our purposes, it is useful for describing both the
format of the raw data and various computational procedures. Figure 1 shows a small section of
a Lexis diagram that has been divided into 1Ö1 cells (i.e., one year of age by one year of time).
Each 45° line represents an individual lifetime, which may end in death, denoted by x (lines c and
e), or out-migration, denoted by a solid circle (line b). An individual may also migrate into the
population, denoted by an open circle (lines d and g). Other life-lines may merely pass through the
section of the Lexis diagram under consideration (lines a and f).

Suppose we want to estimate the death rate for the 1Ö1 cell that is highlighted in Figure 1 (i.e.,
for age x to x+ 1 and time t to t+ 1). If the exact coordinates of all life-lines are known, then the
exposure-to-risk in person-years can be calculated precisely by adding up the length of each line
segment within the cell (of course, the actual length of each segment must be divided by

√
2, since

life-lines are 45° from the age or time axes). Following this procedure, the observed death rate for
this cell would be 0.91, which is the number of deaths (in this case, one) divided by the person-years
of exposure (about 1.1). This is the best estimate possible for the underlying death rate in that cell
(i.e., the death rate that would be observed at that age in a very large population subject to the
same historical conditions).

includes data for many countries not covered by the HMD. The HLD is available at www.lifetable.de.
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Figure 1: Example of a Lexis Diagram
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However, exact life-lines are rarely known in studies of large national populations. Instead, we
often have counts of deaths over intervals of age and time, and counts or estimates of the number
of individuals of a given age who are alive at speci�c moments of time. Considering again the
highlighted cell in Figure 1, the population count at age x is 2 at time t (lines b and c) and 1 at
time t + 1 (line e). Given only this information, our best estimate of the exposure-to-risk within
the cell is merely the average of these two numbers (thus, 1.5 person-years). Using this method, the
observed death rate would be 1/1.5 = 0.67, which is lower than the more precise calculation given
above because the actual exposure-to-risk has been overestimated. The estimation of death rates is
inevitably less precise in the absence of information about individual life-lines, although estimates
based on aggregate data using such a procedure are generally quite reliable for large populations.

Death counts are often available by age, year of death (i.e., period), and year of birth (i.e.,
cohort). Such counts can be represented by a Lexis triangle, or , as illustrated in Figure 2.
Death counts at this level of detail are used in many important calculations in the HMD. One of
the most important steps in computing the death rates and life tables for the HMD is to estimate
death counts by Lexis triangle if these are not already available in the raw data.
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Figure 2: Illustration of Lexis triangles
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2.3 Standard con�gurations of age and time

For all data in this collection, age and time are arranged in 1-, 5-, and 10-year intervals. The
con�guration of a matrix of death rates (or some other quantity) is denoted by 1Ö1, 5Ö1, 5Ö10,
etc. In this notation, the �rst number always refers to the age interval, and the second number
refers to the time interval. For example, 1Ö10 denotes a con�guration with single years of age
and 10-year time intervals. In the HMD, death rates and life tables are generally presented in six
standard con�gurations: 1Ö1, 1Ö5, 1Ö10, 5Ö1, 5Ö5, and 5Ö10. Furthermore, the database includes
estimates of death counts by Lexis triangle and of population size (on January 1st) by single years
of age, making it possible for the sophisticated user to compute death rates and life tables in any
con�guration desired.

All ranges of age and time describe inclusive sets of one-year intervals. For example, the age
group 10�14 extends from exact age 10 up to (but not including) exact age 15, and the time period
designated by 1980�84 begins at the �rst moment of January 1, 1980, and ends at the last moment
of December 31, 1984. In addition, the following conventions are used throughout the database for
organizing information by age and time:

� 5-year time intervals begin with years ending in 0 or 5 and �nish with years ending in 4 or 9 ;
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� 10-year time intervals begin with years ending in 0 and �nish with years ending in 9 ;

� incomplete 5- or 10-year time intervals are included in presentations of death rates or life tables
if data are available for at least 2 years (at either the beginning or the end of the series);

� for raw data, data in one-year age groups are always provided up to the highest age available
(followed by an open age interval only if more detailed data are not available);

� for all data on country pages, one-year age groups stop at age 109, with a �nal category for
ages 110 and above;

� for 5-year age groups, the �rst year of life (age 0) is always separated from the rest of its
age group (ages 1�4), and the last age category is for ages 110 and above. Thus, a 5Ö1
con�guration contains data for single years of time with (typically) the following age intervals:
0, 1�4, 5�9, 10�14,. . . , 105�109, 110+.

It is important to note that data shown on country pages by single years of age up to 110+ have
sometimes been approximated from aggregate data (e.g., �ve-year age groups, open age intervals)
using the methods described here. Although there are some obvious advantages to maintaining a
uniform format in the presentation of death rates and life tables, it is important not to interpret
such approximated data literally. In all cases, the user must take responsibility for understanding
the sources and limitations of all data provided here.

2.4 Female / male / total

In this database, life tables and all data used in their construction are available for women and
men separately and together. In most cases, a single �le contains columns labeled Female, Male

and Total (note that this is alphabetical order). However, in the case of life tables, which already
contain several columns of data for each group, data for these three groups are stored in separate
�les.

Raw data for women and men are always pooled prior to making Total calculations. In other
words, death rates and other quantities are not merely the average of the separate values for females
and males. For this reason, all Total values are a�ected by the relative size of the two sexes at a
given age and time.

2.5 Periods and cohorts

Raw data are usually obtained in a period format (i.e., by the year of occurrence rather than by year
of birth). Deaths are sometimes reported by age and year of birth, but the statistics are typically
collected, published, and tabulated by year of occurrence. Although raw data are presented here
in a period format only, death rates and life tables are provided in both formats if the observation
period is su�ciently long to justify such a presentation. Death rates are given in a cohort format
(i.e., by year of birth) if there are at least 30 consecutive calendar years of data for that cohort.
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Cohort life tables are presented if there is at least one cohort observed from birth until extinction.5

In that case, life tables are provided for all extinct cohorts and for some almost-extinct cohorts as
well.6

2.6 Adjustments to raw data

Most raw data require various adjustments before being used as inputs to the calculations described
here. The most common adjustment is to distribute persons of unknown age (in either death or
census counts) across the age range in proportion to the number of observed individuals in each age
group. Another common adjustment is to split aggregate data into �ner age categories�in the case
of death counts, from 5Ö1 to 1Ö1 data, and from 1Ö1 data to Lexis triangles7.

2.7 Format of data �les

Raw data for this database have been assembled from various sources. However, all raw data have
been assembled into �les conforming to a standardized format. There are di�erent formats for
births, deaths, census counts, and population estimates. The raw data �les on the web page are
always presented in one of these standardized formats. Output data�such as exposure estimates,
death rates, and life tables�are also presented in standardized formats.

3 Steps for computing mortality rates and life tables

There are six steps involved in computing mortality rates and life tables for the core section of
the HMD. Computational details are provided in later sections of this document, including the
appendices. Here is just an overview of the process:

1. Births. Annual counts of live births by sex are collected for each population over the longest
possible time period. At a minimum, a complete series of annual birth counts is needed for the
time period over which mortality rates and period life tables are computed. These counts are
used mainly for estimating the size (on January 1st of each year) of individual cohorts from
birth until the time of their �rst census, and for other adjustments based on relative cohort
size. When available, birth counts by month are recorded as well; these are used to account
for non-uniformity in the temporal distribution of events when estimating exposure-to-risk
(see section 6 and Appendix E).

2. Deaths. Death counts are collected at the �nest level of detail available�ideally, cross-
classi�ed by age, period and cohort (Lexis triangles). Sometimes, however, death counts

5An extinct cohort is one whose members are assumed to have all died by the end of the observation period. A
rule for identifying the most recent extinct cohort is given later in section 5.3.

6A simple decision rule is used to determine when it is acceptable to compute life tables for almost-extinct cohorts.
In such cases, death rates for ages not yet observed are based on the average experience of previous cohorts. These
procedures are described in section 7.2.2.

7These two common procedures are described in sections 4.1 and sections 4.2�4.4, respectively.

- 9 -



Last Revised: January 26, 2021 (Version 6)

are available only for 1Ö1 Lexis squares or 5Ö1 Lexis rectangles. Before making subsequent
calculations, deaths of unknown age are distributed proportionately across the age range, and
aggregated deaths are split into �ner age categories. Additional adjustments or ad hoc esti-
mations may be necessary, depending on the characteristics of the raw data for a particular
population. Any such adjustments are described in the population-speci�c documentation,
and are summarized in Appendix F.

3. Population size. Below age 80, estimates of population size on January 1st of each year
are either obtained from another source (most commonly, o�cial estimates) or derived using
intercensal survival methods. In most cases, all available census counts are collected for the
time period over which mortality rates and life tables are computed. The maximum level of age
detail is always retained in the raw data and used in subsequent calculations. When necessary,
persons of unknown age are distributed proportionately into other age groups before making
subsequent calculations. Above age 80, population estimates are derived by the method of
extinct generations for all cohorts that are extinct (see section 5.3 for extinction rule), and by
the survivor ratio method for non-extinct cohorts aged 90 or older at the end of the observation
period. For non-extinct cohorts aged 80 to 89 at the end of the observation period, population
estimates are obtained either from another source or by applying the method of intercensal
survival.

4. Exposure-to-risk. Estimates of the population exposed to the risk of death during some age-
time interval are based on annual (January 1st) population estimates, with small corrections
that re�ect the timing of deaths during the interval. Period exposure estimations are based on
assumptions of uniformity in the distribution of events except when historical monthly birth
data are available.

5. Death rates. For both periods and cohorts, death rates are simply the ratio of death counts
and exposure-to-risk estimates in matched intervals of age and time.

6. Life tables. Period death rates are converted to probabilities of death by a standard method.
Cohort probabilities of death are computed directly from raw data, but they are related to
cohort death rates in a consistent way. These probabilities of death are used to construct life
tables.

4 Common adjustments to raw data

In this section, we give formulas for four common adjustments to raw data: 1) redistributing deaths
of unknown age, 2) splitting 1Ö1 death counts into Lexis triangles, 3) splitting 5Ö1 death counts
into 1Ö1 data, and 4) splitting death counts in open age intervals into 1Ö1 data.8

8In recent years, some national statistical o�ces have begun reporting deaths by year of occurrence and by year
of registration (these may di�er if registration was delayed). In such cases, we tabulate deaths according to the year
in which they occurred. If data are not available by Lexis triangle, we split them into triangles using the methods
described in this document. If deaths that were registered late are available in the same format as other deaths, we
�rst sum the two sets of data and then split them into triangles.

- 10 -



Last Revised: January 26, 2021 (Version 6)

4.1 Distributing deaths of unknown age

The most common adjustment to raw data involves distributing observations (either deaths or
census counts) where age is unknown into speci�c age categories. In general, such observations are
distributed proportionally across the age range.

For example, suppose that death counts are available for individual triangles of the Lexis diagram
but that age is unknown for some number of deaths. Formally, let

DL(x, t) = number of lower-triangle deaths recorded among those aged [x, x+ 1) in year t;

DU (x, t) = number of upper-triangle deaths recorded among those age [x, x+ 1) in year t;

DUnk(t) = number of deaths of unknown age in year t;

DTot(t) = total number of deaths in year t

=
∑
x

[DL(x, t) +DU (x, t)] +DUnk(t) .

Then, the following pair of equations redistributes deaths of unknown age proportionally across
upper and lower Lexis triangles over the full age range:

D∗L(x, t) = DL(x, t) +DUnk(t) ·
DL(x, t)∑

x [DL(x, t) +DU (x, t)]

= DL(x, t) ·
(

DTot(t)

DTot(t)−DUnk(t)

) (1)

and

D∗U (x, t) = DU (x, t) +DUnk(t) ·
DU (x, t)∑

x [DL(x, t) +DU (x, t)]

= DU (x, t) ·
(

DTot(t)

DTot(t)−DUnk(t)

) , (2)

for all ages x in year t.9

These calculations typically result in non-integer death �counts� for individual ages and Lexis
triangles. In fact, such numbers are no longer true counts but rather estimated counts. However,
since they are our best estimates of actual death counts, it is appropriate to use them in subsequent
calculations. In all formulas given below, it is assumed that deaths of unknown age have been
distributed proportionally, if needed, and the superscript, ∗, used in this section is suppressed for
the sake of simplicity.

When raw death counts are available in a 1Ö1 or 5Ö1 format, deaths of unknown age (if any)
are distributed across the existing age groups before splitting the raw counts into Lexis triangles,
as described below. Note, however, that the �nal result of these calculations would not change if
aggregate data were �rst split into �ner age categories before redistributing deaths of unknown age.
In other words, the ordering of these procedures does not matter.

Like death counts, census tabulations may contain persons of unknown age. If needed, a similar
adjustment is made before proceeding with the calculations used for estimating population on
January 1st as described in a later section.

9This adjustment re�ects an assumption that the probability of age not being reported is independent of age itself.
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4.2 Splitting 1x1 death counts into Lexis triangles

Death counts are often available only in 1Ö1 Lexis squares and not in Lexis triangles
●
, ●

.10Since many of our subsequent calculations are based on Lexis triangles, it is necessary to devise
a method for splitting such 1Ö1 death data into triangles. In general, the proportion of deaths
in lower and upper Lexis triangles varies with age, as shown by the regression model presented
later in this section (see also Vallin (1973)). Nevertheless, an adequate procedure in many cases is
simply to assign half of each 1Ö1 death count to the corresponding lower and upper triangles, since
errors of overestimation for one triangle (in a lower-upper pair) are typically balanced by errors of
underestimation for the other triangle in almost all subsequent calculations. This simple procedure
was applied successfully to the analysis of mortality above age 80 in the Kannisto-Thatcher database
(Andreev et al. 2003).

However, for a collection of mortality data in both period and cohort formats covering the entire
age range, a more complicated procedure is needed for at least two reasons: (1) deaths in the �rst
year of life are heavily concentrated in the lower triangle and should not be split in half, and (2) at
any age, the distribution of deaths across the two triangles is a�ected by the relative size of the two
cohorts, which may substantially �uctuate due to historical events such as abrupt falls and jumps
in births due to the two world wars. Once the procedure for splitting 1Ö1 deaths is modi�ed to take
these matters into account, it is only a small step further toward a complete model that adjusts for
several factors that are known to a�ect the distribution of deaths by Lexis triangle.

For these reasons, we have developed a regression equation for use in splitting 1Ö1 deaths into
Lexis triangles. The equation is based on a multiple regression analysis of data for three countries,
which is described more fully in Appendix A. The equation is expressed in terms of the proportion
of deaths that occur in the lower triangle. In general, we denote this proportion as follows:

πd(x, t) =
DL(x, t)

DL(x, t) +DU (x, t)
. (3)

When the values of DL(x, t) and DU (x, t) are not known, our task is to derive an estimated
proportion in the lower triangle, denoted π̂d(x, t). From this quantity, we compute estimates of
lower- and upper-triangle deaths:

D̂L(x, t) = π̂d(x, t) ·D(x, t) and D̂U (x, t) = D(x, t)− D̂L(x, t) = [1− π̂d(x, t)] ·D(x, t) ,

where D(x, t) is the observed number of deaths in the 1Ö1 Lexis square.

10Sometimes death counts are available only by period-cohort parallelogram (i.e., holding calendar year and birth
cohort constant, but covering more than one age year). Within each single year birth cohort, these deaths are
simply split in half into the two respective Lexis triangles. Similarly, death counts may be available by age-cohort
parallelogram (i.e., age and birth cohort are constant, but the parallelogram covers more than one calendar year), in
which case we also split the deaths in half into Lexis triangles (for year t and year t+ 1).
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The equation for estimating πd(x, t) di�ers by sex. For women, the equation is as follows:

π̂d(x, t) = 0.4710 + α̂F
x + 0.7372 · [πb(x, t)− 0.5]

+ 0.1025 · I(t = 1918)− 0.0237 · I(t = 1919)

− 0.0112 · log IMR(t)

− 0.0688 · log IMR(t) · I(x = 0)

+ 0.0268 · log IMR(t) · I(x = 1)

+ 0.1526 · [log IMR(t)− log(0.01)] · I(x = 0) · I(IMR(t) < 0.01) .

(4)

In this equation, log refers to the natural logarithm. The indicator function, I(), equals one if
the logical statement within parentheses is true and zero if it is false. Dummy variables for years
1918 and 1919 are included to re�ect the strong impact of the worldwide Spanish �u epidemic on
the distribution of deaths within those two years. The estimated age e�ects, α̂F

x , for the female
version of the equation, are given in Table A.1 (in Appendix A) under the column for Model VI.
Except for ages 0 and 1, the same age coe�cient is used for more than one single-year age within
a broader age group, and the coe�cient for the age group 100�104 is used for all ages above 100
years. The birth proportion, πb(x, t), is de�ned formally as follows:11

πb(x, t) =
B(t− x)

B(t− x) +B(t− x− 1)
, (5)

where B(t) is the number of births (sexes combined) occurring in year t in the same population.12

Wherever the available birth series is incomplete, we set πb(x, t) = 0.5.
The infant mortality rate used for this analysis (both sexes combined) is found using a method

proposed by Pressat (1972):

IMR(t) =
D(0, t)

1
3B(t− 1) + 2

3B(t)
. (6)

Note that the infant mortality rate can be computed in this manner before splitting 1Ö1 deaths
into triangles. If B(t) and D(0, t) are known but B(t− 1) is unknown, then we set B(t− 1) = B(t)
to calculate IMR(t). In general, the historical decline in infant mortality has been associated with a
higher proportion of deaths in the lower triangle (relative to the upper triangle) across the age range,
except at age 1. At age 0, the decline in infant mortality is associated with a rapidly increasing
concentration of deaths within the lower triangle, until the IMR falls below one percent. Below
that level, the historical trend reverses itself, and the proportion of infant deaths in the lower Lexis
triangle tends to fall.

11The birth proportion provides information about the relative size of two successive birth cohorts, who both pass
through the age interval [x, x+1) during calendar year t. More precisely, it expresses the original size of the younger
cohort (passing through the lower triangle of a 1Ö1 Lexis square) as a proportion of the total births for the two
cohorts. Although this number measures the relative size of the two cohorts at birth, it can also serve as a useful
indicator of their relative sizes at later ages.

12 In the case of a country or area that has undergone territorial changes, it is important to adjust the birth series
so that it refers always to the same population. See Appendix D for a general discussion of how we deal with changes
in population coverage.
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For men, the equation for estimating πd(x, t) is as follows:

π̂d(x, t) = 0.4838 + α̂M
x + 0.6992 · [πb(x, t)− 0.5]

+ 0.0728 · I(t = 1918)− 0.0352 · I(t = 1919)

− 0.0088 · log IMR(t)

− 0.0745 · log IMR(t) · I(x = 0)

+ 0.0259 · log IMR(t) · I(x = 1)

+ 0.1673 · [log IMR(t)− log(0.01)] · I(x = 0) · I(IMR(t) < 0.01) .

(7)

In this equation, πb(x, t) and IMR(t) are the same as in the female equation, since each is based
on the total population. However, the age coe�cients (as well as all other coe�cients) are di�erent
and are given in Table A.2 (in Appendix A) under Model VI.

4.3 Splitting 5x1 death counts into 1Ö1 data

Death counts in a 5Ö1 con�guration are split into 1Ö1 data using cubic splines �tted to the cumu-
lative distribution of deaths within each calendar year. In principle, the same or a similar method
could be applied to any con�guration of death counts by age.13 The method used here requires only
that the raw data include death counts for the �rst year of life and for the �rst �ve years of life.
Other than these two restrictions, it does not matter whether the raw data are strictly in �ve-year
age groups (after age �ve) or in some other con�guration. Also, there can be an open age interval
above 90, 100, or some other age. The spline method is used to split death counts for all ages below
the open age interval. Details of the computational methods are given in Appendix B.

4.4 Splitting death counts in open age intervals into Lexis triangles

In some cases the raw data provide no age detail on death counts above a certain age x. Instead, we
know only the total number of deaths in this open age interval for some calendar year t, which we
denote ∞Dx(t) In these situations we need a method for splitting ∞Dx(t) into �ner age categories.
One possibility would be to split death counts in the open age interval into 1Ö1 data and then to
apply the method described earlier for splitting 1Ö1 death counts into Lexis triangles. However,
the method for splitting the open age interval itself is inevitably arbitrary and imprecise, and it
seems that little would be gained by such a 2-step procedure. Therefore, our method splits ∞Dx(t)
immediately into Lexis triangles.

In order to distribute deaths in the open age interval, we �t the Kannisto model of old-age
mortality (Thatcher et al., 1998) to death counts for ages x∗ − 20 and above, where x∗ is the lower
boundary of the open age group (e.g., 80, 90, 100), thus treating death counts within a period as
though they pertain to a closed cohort. We then use the �tted model to extrapolate death rates by
Lexis triangle within the open age interval and use those rates to derive the number of survivors at
each age. For details, see Appendix C.

13For some populations, we have death counts by period-cohort parallelograms covering �ve cohorts (e.g., deaths
in year t for the t−9 to t−5 birth cohorts who will complete ages 5�9 in year t). In this case, we use the cubic spline
method described here to split these deaths into single birth cohorts (see Appendix B for more details).
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5 Population estimates (January 1st)

We describe four methods for deriving age-speci�c estimates of population size on January 1st of each
year: 1) linear interpolation, 2) intercensal survival, 3) extinct cohorts, and 4) survivor ratios. For
most of the age range, we use either linear interpolation of population estimates from other sources14

or intercensal survival methods. At ages 80 and older, we use population estimates computed using
the methods of extinct cohorts and survivor ratios (except for those cohorts who are younger than
age 90 at the end of the observation period). We describe the four methods separately. In case
of territorial changes (or other changes in population coverage) during the time period covered by
HMD, adjustments to these methods are described in Appendix D.

5.1 Linear interpolation

In some cases, the available population estimates from other sources are for some date other than
January 1st (e.g., mid-year estimates). When the period between one population estimate and the
next (or a population estimate and a census count) is one year or less, we use linear interpolation
to derive the January 1st population estimate.15 When the period between population counts is
greater than one year (e.g., census counts), we employ intercensal survival.

5.2 Intercensal survival methods

Intercensal survival methods provide a convenient and reliable means of estimating the population
by age on January 1st every year during the intercensal period. There are two cases: (1) pre-existing
cohorts (i.e., those already alive at the time of the �rst census), and (2) new cohorts (i.e., those
born during the intercensal interval). We develop formulas for these two situations separately by
�rst considering the simple case of a country that conducts censuses every �ve years on January 1st.
We then propose a more general method that can be used for censuses occurring at any time of the
year and for intercensal intervals of any length.

5.2.1 Speci�c example

Suppose that a country conducts censuses every �ve years, and suppose that each census occurs
on January 1st. Therefore, population estimates by single years of age are available at �ve-year

14The main criteria for using population estimates from another source are that they are available and that they
are believed to be reliable.

15We calculate the population as of January 1st of year t as a weighted average of the estimates in years t and
t − 1, where the weights are based on the proportion of the year between January 1st and the date of the available
estimate. For example, if we have October 1st estimates, then the January 1st population (in a common year) at age
x is calculated as:

P (x, 01.01.Y Y Y Y ) =
273

365
· P (x, 01.10.Y Y Y Y − 1) +

92

365
· P (x, 01.10.Y Y Y Y ) .

At the beginning or end of the data series, we cannot use linear interpolation because there are not two data points
(e.g., the last population estimate in the series is for July 1st of year t). In these cases, we use pre-censal or post-

censal estimation (see Section 5.2.3) to derive the January 1st estimate (i.e., by adding or subtracting deaths for each
cohort).
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intervals, but no comparable estimates are available for intervening years.

1. Pre-existing cohorts

The Lexis diagram in Figure 3a depicts a cohort that is already alive at the time of the �rst
census. The cohort aged x at time t is followed through time for 5 years. Suppose that
all deaths in the population are recorded with a relatively high level of detail, such that for
each year in the intercensal period, death counts are available by both age and year of birth.
Thus, it is known with some precision how many life-lines ended by death in each of the small
triangles shown in this �gure.

Figure 3a: Intercensal survival method: existing cohorts (example)

x

x + 1

x + 2

x + 3

x + 4

x + 5

x + 6

Age

t t+1 t+2 t+3 t+4 t+5 Time

P(x+5,t+5)

P(x,t)

DU (x+1,t+1)

DL (x+4,t+3)

The information represented by Figure 3a can be used to estimate the size of the cohort on
January 1st of each intercensal year. The simplest procedure consists merely of subtracting
death counts from the initial census count to obtain cohort population estimates on January 1st

of each succeeding year. Unfortunately, the �nal step of such a computation usually yields an
estimate of cohort size at time t+ 5 that di�ers from the number given by the corresponding
census. This inconsistency is caused by two factors: migration and error. Although both of
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these factors tend to be small relative to cohort size (at least for national populations), as a
matter of principle they should not be ignored. The standard method consists of distributing
implied migration/error uniformly over the parallelogram shown in Figure 3a. Then, estimates
of cohort size for intercensal years are found by subtracting, from the initial census count, both
the observed death counts and an estimate of net migration/error.

Formally, the procedure can be described as follows. Let C1(x) equal the census count for
persons aged [x, x + 1) on January 1st of year t. De�ne Dv(x, t) as the death count in the

vertical Lexis parallelogram,
●

:

Dv
i (x, t) = DU (x+ i, t+ i) +DL(x+ i+ 1, t+ i) . (8)

Assuming that there is no migration or error, note that

C1(x) =
∞∑
i=0

Dv
i (x, t) . (9)

This formula resembles one that is used for estimating population sizes at older ages (the
extinct cohort method, see below).

Using census information about the size of a cohort at time t, we can estimate its size at the
time of the next census, t+ 5, by the following formula:

Ĉ2(x+ 5) = C1(x)−
4∑

i=0

Dv
i (x, t) . (10)

However, if there is any migration into or out of this cohort during the intercensal period, or
any error in the recording of census or death counts, this estimate will di�er from the actual
count at the time of the next census, C2(x+ 5). By de�nition, total migration/error is equal
to the observed cohort size at the second census minus its estimated size, Ĉ2(x+ 5). We call
this di�erence ∆x:

∆x = C2(x+ 5)− Ĉ2(x+ 5) . (11)

Assuming that migration/error is distributed uniformly across the parallelogram shown in
Figure 3a, the estimated population size on January 1st of each year is as follows:

P (x+ n, t+ n) = C1(x)−
n−1∑
i=0

Dv
i (x, t) +

n

5
∆x , (12)

for n = 0, . . . , 5. By design, when n = 0 or 5 these population estimates match census counts
exactly:

P (x, t) = C1(x) (13)

and
P (x+ 5, t+ 5) = C2(x+ 5) . (14)
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2. New cohorts

The above formula applies only to cohorts already born at the time of the �rst census. For
cohorts born between the two censuses, intercensal population estimates are obtained by
subtracting the number of deaths occurring before the second census from the number of
births for the cohort. For a cohort born in year t+ j within the intercensal interval, [t, t+5),
let

K = length of the interval [t+ j + 1, t+ 5)

= age (at last birthday) of the cohort born in year t+ j at the time of the second census

= 4− j;

and Bt+j is the birth count over the interval [t+ j, t+ j + 1).

An initial estimate of population size for the cohort born in year t+j at the time of the second
census is

Ĉ2(K) = Bt+j −DL(0, t+ j)−
k−1∑
i=0

Dv
i (0, t+ j + 1) , (15)

and the di�erence between this estimate and the actual population count is

∆
′
t+j = C2(K)− Ĉ2(K) . (16)

Thus, the estimated size of the cohort on January 1st of each year from birth until the second
census is:

P (k, t+ j + 1 + k) = Bt+j −DL(0, t+ j) +
2k + 1

2K + 1
∆
′
t+j −

k−1∑
i=0

Dv
i (0, t+ j + 1) , (17)

for k = 0, . . . ,K. As before, population estimates at time t+5 match the counts in the second
census exactly: P (K, t+ 5) = C2(K).

For example, consider the cohort born in year t + 2. Thus, j = 2, and K = 4 − j = 2. In
other words, the cohort born in year t + 2 will be aged 2 at the time of the second census,
as illustrated in Figure 3b. Population estimates for this cohort on January 1st of each year
(until t+ 5) are as follows:

P (0, t+ 3) = Bt+2 −DL(0, t+ 2) +
1

5
∆
′
t+2 , (18)

P (1, t+ 4) = Bt+2 −DL(0, t+ 2)−Dv(0, t+ 3)] +
3

5
∆
′
t+2 , (19)

P (2, t+ 5) = Bt+2 −DL(0, t+ 2) + ∆
′
t+2 −

1∑
i=0

Dv
i (0, t+ 3) . (20)
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Figure 3b: Intercensal survival method: new cohorts (example)
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5.2.2 Generalizing the method

The arguments above make the explicit assumption that the two censuses bounding the intercensal
period each occur on January 1st and are exactly �ve years apart. However, reality is typically more
complicated. In this section, we generalize the method to allow for censuses that occur on any date
of the year and for intercensal intervals of any length.

1. Pre-existing cohorts

Figure 4a depicts an intercensal period bounded by two censuses that occur on arbitrary dates.
Let t and t+N be the times of the �rst and the last January 1st within the intercensal interval.
Thus, N equals the number of complete calendar years between the two censuses. Let f1 be
the fraction of calendar year t−1 before the �rst census, and let f2 be the fraction of calendar
year t + N before the second census. Thus, the two censuses occur at times t1 = t − 1 + f1
and t2 = t+N + f2, and the total length of the intercensal period is N + 1− f1 + f2.

The highlighted cohort in Figure 4a is of age x on January 1st of year t. This cohort was
aged x − 1 or x at the time of the �rst census, and will be aged x + N or x + N + 1 at the
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Figure 4a: Intercensal survival method: pre-existing cohorts (in general)
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time of the second census. If individuals are uniformly distributed across their respective age
intervals at each census enumeration, the sizes of this cohort at the beginning and end of the
intercensal interval are

C1 = (1− f1) · C1(x− 1) + f1 · C1(x) (21)

and

C2 = (1− f2) · C2(x+N) + f2 · C2(x+N + 1) , (22)

respectively. Although the assumption of a uniform distribution across age intervals is obvi-
ously incorrect, errors of exaggeration will tend to be balanced by those of understatement,
yielding su�ciently accurate estimates in most cases.

Similarly, assuming a uniform distribution of deaths within Lexis triangles, deaths to this
cohort in year t− 1 after the �rst census enumeration will be composed of two components:

Da = (1− f21 ) ·DL(x, t− 1) (23)
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and

Db = (1− f1)2 ·DU (x− 1, t− 1) . (24)

Likewise, under the same assumption, deaths to this cohort in year t + N before the second
census enumeration will be

Dc = f22 ·DL(x+N + 1, t+N) (25)

and

Dd = (2f2 − f22 ) ·DU (x+N, t+N) . (26)

Using these numbers along with death counts during complete calendar years of the intercensal
interval, we estimate the size of the highlighted cohort at the time of the second census as
follows:

Ĉ2 = C1 − (Da +Db)− (Dc +Dd)−
N−1∑
i=0

Dv
i (x, t) . (27)

The di�erence between the actual census count and this estimate, ∆x = C2 − Ĉ2, represents
the total intercensal migration/error for this cohort. Finally, the size of the cohort on each
January 1st of the intercensal interval is estimated as follows:

P (x+ n, t+ n) = C1 − (Da +Db) +
1− f1 + n

N + 1− f1 + f2
∆x −

n−1∑
i=0

Dv
i (x, t) , (28)

for n = 0, . . . , N .

2. Infant cohort

The above formulas are applicable for cohorts that are aged 1 or more on the �rst January 1st

of the intercensal interval. For the cohort aged 0 on this date (Figure 4b), and for new cohorts
born during the intercensal interval (Figure 4c), di�erent formulas are needed. For the infant
cohort, the following modi�cations to the above formulas are necessary:

C1 = (1− f1) ·Bt−1 + f1 · C1(0) , (29)

Ĉ2 = C1 −Da − (Dc +Dd)−
N−1∑
i=0

Dv
i (0, t) , (30)

and

P (x+ n, t+ n) = C1 +
1
2

(
1− f21

)
+ n

N + 1
2

(
1− f21

)
+ f2

∆0 −Da −
n−1∑
i=0

Dv
i (x, t) , (31)
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for n = 0, . . . , N , where ∆0 = C2 − Ĉ2. Note the following four di�erences between these
formulas and those given earlier: (1) x disappears from the latter two equations since x = 0;
(2) in the �rst formula, C1(x−1) is replaced by Bt−1, the number of births during the calendar
year of the �rst census; (3) in the latter two formulas, Db is absent as it is unde�ned; and (4)
in the last term of the third equation, 1− f1 is replaced by 1

2

(
1− f21

)
in both numerator and

denominator. The formulas for Da, Dc, Da, and C2 are unaltered.

Figure 4b: Intercensal survival method: infant cohorts (in general)
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3. New cohorts

Lastly, we consider the case of a cohort born during complete calendar years of the intercensal
interval. A cohort born in year t + j will be aged K = N − j − 1 on the last January 1st

before the second census. De�ning f2, Dc, and Dd as before, the following equations are used
to estimate the size of new cohorts on January 1st of each year (from birth until just before
the second census):

Ĉ2 = Bt+j −DL(0, t+ j)− (Dc +Dd)−
K−1∑
i=0

Dv
i (0, t+ j) (32)
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and

P (k, t+ j + k + 1) = Bt+j −DL(0, t+ j)

+
2k + 1

2K + 1 + 2f2
∆
′
t+j −

k−1∑
i=0

Dv
i (0, t+ j) ,

(33)

for k = 0, . . . ,K, where ∆
′
t+j = C2 − Ĉ2.

Figure 4c: Intercensal survival method: new cohorts (in general)
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5.2.3 Pre- and postcensal survival method

For a short period before the �rst census or after the last census, population estimates can be
derived simply by adding or subtracting deaths from population counts in a census (or, for new
cohorts, from birth counts). The formulas are similar to those presented earlier, although they
lack a correction for migration/error. Therefore, population estimates for recent years that are
derived in this manner must be considered provisional. They will be replaced by �nal estimates
once another census is available to close the intercensal interval. The purpose of such estimates is
to allow mortality estimation during recent years or for a short period before an early census, when
appropriate death counts are available during an open census interval.

Examples of pre- and postcensal survival estimation are shown in Figure 5. The size of the
cohort born in year t− x− 1 on January 1st of years t− 1 and t− 2 is estimated as follows:

P (x− 1, t− 1) = C1 +D
′
a +D

′
b (34)
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and

P (x− 2, t− 2) = C1 +D
′
a +D

′
b +Dv(x− 1, t− 2) . (35)

To estimate the size of the same cohort on January 1st of years t + N + 1 and t + N + 2, we
have:

P (x+N + 1, t+N + 1) = C2 −D
′
c −D

′
d (36)

and

P (x+N + 2, t+N + 2) = C2 −D
′
c −D

′
d −Dv(x+N, t+N + 1) . (37)

In this notation, D
′
a, D

′
b, D

′
c, and D

′
d, are the complements of Da, Db, Dc, and Dd, respectively.

That is, the sum of each pair of death counts equals the number of deaths in a Lexis triangle. For
example, comparing Figures 4a and 5, we see that D

′
a +Da = DL(x, t− 1).

Figure 5: Pre- and post-censal survival method
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5.2.4 Intercensal survival with census data in n-year age groups

The above discussion assumes that census data are available in single-year age groups. However, for
many historical censuses the available counts refer to n-year age groups, where n is often 5. In these
cases, we must �rst split the data into one-year age groups before computing population estimates
using the method of intercensal survival. We employ a simple method for this purpose. We assume
that a more recent census is available, which contains population counts by single years of age. Using
the age distribution at the time of the later census, plus death counts in the intercensal interval,
we estimate the age distribution of the earlier census by the method of reverse survival. However,
these estimates may not sum to the total (or sub-totals) given in the earlier census. Therefore,
we use only the estimated distribution of the population by age at the time of the earlier census,
which is applied to the observed counts within n-year age intervals as a means of creating �ner age
categories. Thus, all counts contained in the earlier census are preserved in the process of making
these calculations.

5.3 Extinct cohorts methods

The method of extinct generations can be used to obtain population estimates for cohorts with no
surviving members at the end of the observation period. With this method, the population size for
a cohort at age x is estimated by summing all future deaths for the cohort, which can be written
as follows:

P (x, t) =
∞∑
i=0

Dv
i (x, t) . (38)

This method assumes that there is no international migration after age x for the cohort in
question, which is a reasonable assumption only for advanced ages. We use the method of extinct
generations to estimate population sizes for ages 80 and above only, as illustrated in Figure 6.

Prior to applying the method of extinct cohorts, it is necessary to determine which cohorts are
extinct. For this purpose, we adopt a method proposed by Väinö Kannisto and used already in the
Kannisto-Thatcher oldest-old mortality database (Andreev et al. 2003). We say that a cohort is
extinct if it has attained age ω by end of the observation period (assumed to occur on January 1st

of year tn). Thus, we need to �nd ω or, equivalently, ω−1, the age of the oldest non-extinct cohort.
Consider a cohort aged x at the end of the observation period, where x is some very high age (like

120). We examine the most recent ` cohorts from a similar point in their life histories. Speci�cally,
we consider the observed deaths for these cohorts from January 1st of the year when they were aged
x until the end of the observation period (see illustration in Figure 7, where l = 5 and x = ω − 1).
For these cohorts over the speci�ed intervals of age and time, we compute the average number of
deaths:

D̃(x, tn, l) =
1

l

l∑
j=1

j−1∑
i=0

Dv
i (x, tn − j) , (39)

with l = 5. For very high ages, D̃(x, tn, l) will be close to zero. We de�ne ω to be the lowest age x
such that D̃(x, tn, l) ≤ 0.5. Equivalently, ω − 1 is the highest age x for which D̃(x, tn, l) > 0.5.
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Figure 6: Methods used for population estimates

A - Official estimates / intercensal survival
B - Extinct cohorts
C - Survivor ratio, SR90+
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5.4 Survivor ratio

The survivor ratio method is used to estimate population sizes above age 80 for almost-extinct
cohorts (see Figure 6). The method is applied to cohorts that are at least age 90 at the end of the
observation period but not yet extinct (according to the rule given above).16 Various versions of
this method have been proposed and studied previously (see discussion in Andreev (1999)). We use
the version that proved most reliable in an earlier comparative study (Thatcher et al. 1998).

De�ne a survivor ratio to be the ratio of survivors alive at age x on January 1st of year t to
those in the same cohort who were alive k years earlier:

R =
P (x, t)

P (x− k, t− k)
. (40)

16We make an exception for Sweden, Denmark, Norway, Finland, and Iceland, which have reliable January 1st

population estimates by single year of age to the maximum age ω for the last year of observation. For these countries,
we use the o�cial population estimates for ages 90 and older on January 1st of year tn and derive population estimates
in earlier years (for each cohort) by adding observed death counts back to age 80 (like for the extinct cohort method).
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Figure 7: Illustration of extinction rule (with l = 5 and x = ω − 1)
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Assuming that there is no migration in the cohort over the interval, this ratio can also be written:

R =
P (x, t)

P (x, t) + Ḋ
, (41)

where Ḋ =
∑k

i=1 [Dv(x− i, t− i)], the total deaths in any of the parallelograms in Figure 8. Solving
this equation for P (x, t), we obtain:

P (x, t) =
R

1−R
Ḋ . (42)

The survivor ratio for the oldest non-extinct cohort (aged ω − 1 at time tn) is illustrated in
Figure 8. This survivor ratio is unknown, since we do not know the size of the cohort, P (ω− 1, tn),
at the end of the observation period. However, comparable survivor ratios (i.e., with age ω − 1 in
the numerator) for all previous cohorts are available, since population size can be estimated using
the method of extinct cohorts.

Suppose that a survivor ratio has approximately the same value for the cohort in question and
for the previous m cohorts. That is, suppose that

R(x, t, k) =
P (x, t)

P (x− k, t− k)
≈ P (x, t− 1)

P (x− k, t− k − 1)
≈ · · · ≈ P (x, t−m)

P (x− k, t− k −m)
. (43)
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Then, we can estimate R by computing the pooled survivor ratio for the m previous cohorts:

R∗(x, t, k) =

∑m
i=1 P (x, t− i)∑m

i=1 P (x− k, t− k − i)
. (44)

If both R∗ and Ḋ are available for a given cohort, we can estimate P (x, t) as follows:

P̃ (x, t) =
R∗

1−R∗
Ḋ . (45)

Figure 8: Survivor ratio method (at age x = ω − 1, with k = m = 5)
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In the simplest version of the survivor ratio method, this procedure is used to obtain P (ω−1, tn),
and then the size of this cohort in previous years is estimated by adding observed death counts back
to age 80 (in a fashion similar to the extinct cohort method). It is then possible to apply the same
method recursively to obtain P (ω− 2, tn), P (ω− 3, tn), etc., down to some lower age limit (e.g., 90
years). This method works well if its fundamental assumption is not violated, that is, if the survivor
ratios for successive cohorts are nearly equal. A common occurrence, however, is that these survivor
ratios increase over time as a result of mortality decline. Therefore, R∗ tends to underestimate R,
and P̃ tends to underestimate P .

These considerations motivate a modi�ed version of the survivor ratio estimate:

P̂ (x, t) =cP̃ (x, t) (46)

=c
R∗

1−R∗
Ḋ , (47)

where c is a constant that must be estimated. When mortality is declining/increasing/constant, c
should be greater than/less than/equal to one. This leaves us with the problem of choosing the
proper value of c.
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Following Thatcher et al. (2002), we choose a value of c such that

ω−1∑
x=90

P̂ (x, tn) = P (90+, tn) , (48)

where P (90+, tn) is an o�cial estimate of the population size in the open interval aged 90 and
above at the end of the observation period. This version of the survival ratio method is known as
SR(90+) and is used for the HMD (with k = m = 5) in all cases where P (90+) is available and is
believed to be reliable.17 Otherwise, we use the simpler version of the survival ratio method (i.e.,
with c = 1).

6 Death rates

Death rates consist of death counts divided by the exposure-to-risk (person-years lived) from match-
ing intervals of age and time. Period and cohort death rates are treated separately here, although
they are derived from the same general assumptions.

6.1
●

Period death rates

In the case of a one-year age group and a single calendar year (i.e., a 1Ö1 period death rate), the
central death rate, M(x, t), is estimated by the following formula:

M(x, t) =
D(x, t)

E(x, t)
, (49)

where

D(x, t) = DL(x, t) +DU (x, t) ,

and E(x, t) is the exposure-to-risk in the age interval [x, x+ 1) during calendar year t, summarized
by the Lexis square, ● . DL(x, t) and DU (x, t) refer to deaths in the lower triangle, ● , and the upper
triangle,

●
, respectively. The exposure-to-risk for ● is always measured in terms of person-years

and is computed by the following formula:

E(x, t) = EL(x, t) + EU (x, t) , (50)

where

EL(x, t) = s1P (x, t+ 1) + s2DL(x, t) , (51)

17For some populations, o�cial population estimates are available only for age 85+. In such cases, we use SR(85+)
and note this modi�cation in the general comments (see country-speci�c documentation for details).
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Figure 9: Data for period death rates and probabilities
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and

EU (x, t) = u1P (x, t)− u2DU (x, t) . (52)

The coe�cients s1, s2, u1 and u2 are calculated using information about the distribution of birthdays
within annual cohorts, which we approximate using data on birth counts by month for males and
females combined:
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s1 = 1− b̄2 (53)

s2 =
1− b̄2

2
− σ22

2(1− b̄2)
(54)

u1 = b̄1 (55)

u2 =
b̄1
2
− σ21

2b̄1
, (56)

where b̄1 and b̄2 are the average times at birth for births that occurred in years t− x− 1 and t− x,
respectively, expressed as a proportion of the year, and σ21 and σ

2
2 are the corresponding variances of

time at birth. This method assumes: (i) that the distribution of birthdays within a cohort remains
constant over the life of the cohort (a su�cient condition is equal survival probabilities within the
cohort) and (ii) that the density of deaths within a Lexis triangle is uniform along cohort lines and
proportional to the distribution of birthdays for the cohort that passes through the triangle. For
both b̄ and σ2, we assume births to be uniformly distributed within months. We therefore use exact
month midpoints to calculate these two measures.

When information on births by calendar months is unavailable, we assume a uniform distribution
of births within cohorts, which reduces the preceding formulas to the following simpli�ed form:

E(x, t) =
1

2
[P (x, t) + P (x, t+ 1)] +

1

6
[DL(x, t)−DU (x, t)] . (57)

Figure 9 illustrates data on births, deaths, and population that are used for computing these
quantities. Appendix E provides a more extensive discussion and derivation of these formulas.

6.2
●

Cohort death rates

Cohort death rates are conceptually simpler and tend to be more robust to abrupt mid-year changes
in birth distributions. A 1Ö1 cohort death rate is de�ned as:

M c(x, t) =
Dc(x, t)

Ec(x, t)
, (58)

where the superscript c indicates the age-cohort Lexis shape, ● , seen in Figure 10. These quantities
are estimated using death counts from the lower Lexis triangle in year t and the upper triangle in
year t + 1, January 1st population counts in year t + 1, as well as information about the birth
distribution in year t − x, when available. Except for age 0,18 for cohorts we equate the observed
rates, M c(x, t), with lifetable rates, mx.

Death counts in ● are de�ned as:

Dc(x, t) = DL(x, t) +DU (x, t+ 1) . (59)

Exposure estimates are calculated as follows:

18Age 0 calculations are described later in equation (84)
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Ec(x, t) = P (x, t+ 1) + zLDL(x, t)− zUDU (x, t+ 1) (60)

where zL and zU are calculated using information from the monthly birth distribution from the
same cohort, and are held �xed over the life of the cohort:

zL =
1− b̄

2
+

σ2

2(1− b̄)

zU =
b̄

2
+
σ2

2b̄
, (61)

where b̄ is the mean time of birth within the calendar year of birth, and σ is the corresponding
standard deviation. Figure 10 helps to clarify how these quantities combine in the case of cohort
exposures. In practice exposure calculations that assume uniformity vary little from those that use
full information on a cohort's birth distribution. In the case of a uniform distribution of birthdays,
exposure calculations simplify to

Ec(x, t) = P (x, t) +
1

3
[DL(x, t− 1)−DU (x, t)] . (62)

The exposure estimate at age 0 is an exception from the above. Since the cohort life table death
rate m0 is derived di�erently at age 0 than at other ages, we de�ne

Ec(0, t) =
Dc(0, t)

m0
(63)

in order to ensure that M c(0, t) = m0.
Cohort exposure calculations refer to the age-cohort parallelogram, , and there are no separate

formulas for cohort exposures by Lexis triangles. See Appendix E for further discussion of these
formulas.
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Figure 10: Data for cohort death rates and probabilities
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6.3 Death rates for multi-annual time intervals

For broader intervals of age and/or time (whether time is de�ned by periods or cohorts), death
rates are always found by pooling deaths and exposures �rst and then dividing the former by the
latter. Throughout the rest of this discussion, we will refer either to one-year or �ve-year death
rates (i.e., Mx or 5Mx). For simplicity of notation, we will not specify a particular time interval, as
the formulas for computing probabilities of death and/or life tables are the same for any interval of
time. The di�erence between period or cohort rates should always be apparent from the context.
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7 Life tables

Life table calculations do not depend on the organization of data over time. For any time interval,
the same methods are used for computing life tables from a set of age-speci�c death rates. However,
the methods used here are slightly di�erent for period and cohort life tables. Period tables are
computed by converting death rates to probabilities of death. Before this conversion, death rates at
older ages are smoothed by �tting a logistic function. For cohort life tables, we compute probabilities
of death directly from the data and perform no smoothing at older ages. As discussed in Appendix E,
cohort probabilities of death computed in this manner are fully consistent with the cohort death
rates described in the previous section.

For both periods and cohorts, we begin by computing complete life tables (i.e., single-year
age groups) using our �nal estimates of death counts by Lexis triangle and population size (on
January 1st) by single years of age. Then, the elements required to compute abridged tables (e.g.,
�ve-year age groups) are extracted from the complete tables. Deriving abridged tables from complete
ones (rather than computing them directly from data in �ve-year age intervals) ensures that both
sets of tables contain identical values for life expectancy and other quantities.

7.1
●

Period life tables

A cohort life table depicts the life history of a speci�c group of individuals, whereas a period life
table is supposed to represent the mortality conditions at a speci�c moment in time. Period life
tables are said to be synthetic in that each age group of data comes from a di�erent birth cohort.

Old-age mortality smoothing: Observed period death rates are only one result of a random
process for which other outcomes are possible as well. At older ages where this inherent randomness
is most noticeable, it is well justi�ed to smooth the observed values in order to obtain an improved
representation of the underlying mortality conditions. Thus, for period life tables by single years
of age, we �rst smooth observed death rates at older ages by �tting a logistic function to observed
death rates for ages 80 and above, separately for males and females.19

Suppose that we have deaths, Dx, and exposures, Ex, for ages x = 80, 81, . . . , 110+ (for conve-
nience, we choose x = 110 for the open category above age 110). We smooth observed death rates
Mx by �tting the Kannisto model of old-age mortality (Thatcher et al. 1998), which is a logistic
curve with an asymptote equal to one, to estimate the underlying hazards function, µx:

µx(a, b) =
aeb(x−80)

1 + aeb(x−80)
, (64)

where we require a ≥ 0 and b ≥ 0. Assuming that Dx ∼ Poisson (Exµx+0.5(a, b)), we derive param-

19It is a common actuarial practice to �t a curve to death rates at older ages in the process of computing a life
table. We use the logistic function because Thatcher et al. (1998) concluded that such a curve �ts the mortality
pattern at old ages at least as well as, and usually better than, any other mortality models. Fixing the value of the
asymptote at one simpli�es these calculations and avoids certain anomalies that may occur as a result of random
�uctuations. In any event, estimates of this asymptote have been around one in most previous studies.
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eter estimates â and b̂ by maximizing the following log-likelihood function20:

logL(a, b) =

110∑
x=80

[Dx logµx+0.5(a, b)− Exµx+0.5(a, b)] + constant . (65)

Substituting â and b̂ into equation (64) yields smoothed death rates M̂x, where M̂x = µ̂x+1/2 =

µx+1/2(â, b̂). In this model speci�cation, â and b̂ are constrained to be positive so that smoothed
death rates cannot decline above age 80. For the rest of the calculations described here, �tted death
rates replace observed death rates for all ages at or above Y , where Y is de�ned as the lowest age
where there are at most 100 male deaths or 100 female deaths, but is constrained to 80 ≤ Y ≤ 95.21

Thus, complete period life tables for males and females are constructed based on the following vector
of death rates: M0,M1, . . . ,MY−1, M̂Y , . . . , M̂109,∞M̂110.

Old-age mortality smoothing for the combined-sex lifetable: After obtaining smoothed
death rates for males and females, we calculate the smoothed rates for the total population as a
weighted average of those for males and females:

M̂T
x = wF

x M̂
F
x + (1− wF

x )M̂M
x , (66)

where superscripts T, F, and M represent total, female, and male, respectively, and wF
x represents

the weight for females aged x (these must still be determined).
For observed death rates, the analogous weights equals the observed age-speci�c proportion of

female exposure:

πFx =
EF

x

EF
x + EM

x

=
EF

x

ET
x

. (67)

In practice, the observed proportion of female exposure serves as the weight for ages less than Y as
de�ned above. For ages Y and above, such weights could be calculated from observed exposures,
but due to random �uctuations in such values at older ages, the resulting series of old-age death
rates for the total population would not be as smooth as those for males and females. Consequently,
we smooth πFx itself by �tting the following model by the method of weighted least squares:22

z = logit(πFx ) = log

(
πFx

1− πFx

)
= β0 + β1x+ β2x

2 . (68)

20Fitting the Kannisto model to data is often non-trivial, given that several data points in a given year may be zero
or missing. In such low information settings, di�erent optimizers can give di�erent and con�icting results. The HMD
implementation uses the L-BFGS-B method (Zhu et al. 1997) of the optim function in base R (R Development Core
Team 2012), which in addition to the likelihood function requires an analytic gradient function and the speci�cation
of lower and upper bounds for the â and b̂ parameters. We use 0 as the lower bound and 5 for the upper bound for
both parameters. Both the likelihood and gradient functions are scaled down by a constant of 10−6. Starting values
for â and b̂ come from a grid search. If this procedure fails for a given year of data, the BFGS method of optim is used
(this exception only pertains to a small number of years in early Iceland).

21In other words, we use the �tted death rates for all ages at or above the greater of 80 or the lowest age where
there are at most 100 male or 100 female deaths, and for all ages at or above age 95 regardless of the number of
deaths. We begin using �tted death rates at the same age for both males and females.

22Note that when �tting the model in equation (68), we use exposure data from the same age-range used for �tting
the logistic curve as a model of Mx at older ages.
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We drop observations where EF
x , E

M
x , or both equal 0 (in such cases, πFx = 0 or 1 and thus the

logit is unde�ned), and for �tting equation (68), use weights equal to ET
x .

23 The �tted values are
obtained as follows:

ẑ = β̂0 + β̂1x+ β̂2x
2 and wF = π̂Fx =

eẑ

1 + eẑ
. (69)

Finally, the smoothed total death rates are calculated as:

M̂T
x =

{
πFxM

F
x + (1− πFx )MM

x for x < Y

π̂Fx M̂
F
x + (1− π̂Fx )M̂M

x for x ≥ Y
. (70)

The basic lifetable calculations: We assume that death rates in the life table equal death
rates observed in the population (at least for ages below Y ). This assumption is technically correct
only when the age structure of the actual population is identical to the age structure of a stationary
(i.e., life table) population within each age interval (for more explanation, see Key�tz (1985), or
Preston et al. (2001)). In most situations, however, deviations from this assumption are likely to be
small and unimportant for one-year age intervals. Next, we convert the life table death rates, mx,
into probabilities of death, qx. Let ax be the average number of years lived within the age interval
[x, x+ 1) for people dying at that age. We assume that ax = 1

2 for all single-year ages except age 0
(see below). We then compute qx from mx and ax according to the following formula,

qx =
mx

1 + (1− ax) ·mx
, (71)

for x = 0, 1, 2, . . . , 109. For the open age interval, we set

∞a110 =
1

∞m110
(72)

∞q110 = 1 . (73)

For infants, we use a revised version of the formulas for a0 suggested by Andreev and Kingkade
(2015), as outlined in the table 1. This method produces results similar to the classic Coale-Demeny
formulas (Coale et al. 1983), but it accounts for more recent empirical regularities in the distribution
of death in the �rst year of life, improving estimates for contemporary data. These formulas use
cutpoints in m0 to determine the values of the intercept a and slope b, where the �nal category is
a simple constant value for a0. These formulas are given separately for males and females.

23For �tting the model in equation (68), theoretically, the correct weights would be π̂F
x (1− π̂F

x ) · ET
x , but the use

of these would entail an iterative procedure because the weights depend on the �tted values themselves. Since there
is relatively little variability in π̂F

x (1− π̂F
x ) compared to ET

x over the observed range, using ET
x as the weights should

provide reasonable accuracy and is much more convenient.
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Table 1: Andreev-Kingkade formulas for computing a0 given m0

m0 range formula: a0 = a+ b ·m0

Males

[0, 0.02300) 0.14929− 1.99545 ·m0

[0.0230, 0.08307) 0.02832 + 3.26021 ·m0

[0.08307,∞) 0.29915

Females

[0, 0.01724) 0.14903− 2.05527 ·m0

[0.01724, 0.06891) 0.04667 + 3.88089 ·m0

[0.06891,∞) 0.31411

For a combined-sex life table, we compute a0 as follows:

aT0 =
aF0 D

F
0 + aM0 D

M
0

DF
0 +DM

0

, (74)

where the superscripts F , M , and T denote values for the female, male, and total populations,
respectively, and where Di

0 refers to all deaths at age zero (both lower and upper triangles) for
population i.

To complete the life table calculation, let px be the probability of surviving from age x to x+ 1.
Therefore,

px = 1− qx , (75)

for all ages x. Let the radix of the life table, l0, be 100, 000. Then, the number of survivors (out of
100,000) at ages x > 0 is

lx = l0 ·
x−1∏
i=0

pi . (76)

The distribution of deaths by age in the life-table population is

dx = lx · qx (77)

for x = 0, 1, . . . , 109. For the open age category, ∞d110 = l110.
The person-years lived by the life-table population in the age interval [x, x+ 1) are

Lx = lx − (1− ax) · dx (78)

for x = 0, 1, . . . , 109. For the open age category, ∞L110 = l110 ·a110. The person-years remaining for
individuals of age x equals

Tx =
109∑
i=x

Li +∞L110 (79)
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for x = 0, 1, . . . , 109. For the open age category, ∞T110 = ∞L110. Remaining life expectancy at age
x is

e̊x =
Tx
lx
, (80)

for x = 0, 1, . . . , 110.

7.2
●

Cohort life tables

The methods used to compute mx for cohorts were described in Section 6.2. In this case, the choice
to equate mx toMx is more easily justi�ed, since in the absense of migration, the actual population
is the same as the life table population. Cohort death probabilities, qx, are de�ned as:

qx =
DL(x, t) +DU (x, t+ 1)

P (x, t+ 1) +DL(x, t)
. (81)

This formula remains the same for both uniform and non-uniform birth distributions. It is exact in
the absence of migration, and it is a reasonable approximation in most situations, assuming that
the direction and magnitude of migration are similar in both upper and lower triangles (see Pressat
(1972)), and so it is used for the preparation of cohort lifetables with no further adjustment. The
average time lived in the interval by those who die, ax, is approximated as follows:

ax =
zLDL(x, t) + (1− zU )DU (x, t+ 1)

DL(x, t) +DU (x, t+ 1)
, (82)

where zL andy zU and the means years lived in the interval by those dying in and , respectively,
per equation (60). In the case of uniformly distributed deaths within Lexis triangles, this formula
becomes:

=
1
3DL(x, t) + 2

3DU (x, t+ 1)

DL(x, t) +DU (x, t+ 1)
. (83)

We assume ax = 1
2 if no deaths were observed in the interval. Both in the case of uniform and non-

uniform birth distributions, the three quantities mx, ax and qx relate to each other according to the
identity given in equation (71). An advantage of the method used here is that cohort values of qx,
mx, and ax obey this classic formula even though the three quantities are derived independently from
the original data. Once these three values are available, a complete cohort life table is calculated
using the same formulas as in the case of period tables. The method for multi-year cohorts is similar,
as described later.

As with period life tables, it is not appropriate to assume a uniform distribution of deaths
over the age-cohort parallelogram or along cohort lifelines for age 0. We use a revised version of
the Andreev-Kingkade method (Andreev and Kingkade (2015)), analogous to that presented earlier
in table 1, to estimate the mean age at death, a0, using q0 instead of m0, and then we solve
equation (71) for m0:

m0 =
q0

1− (1− a0) · q0
. (84)

Table 2 gives the q0 cutpoints and corresponding linear coe�cients used for a0 approximation for
infants in cohort lifetables.
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Table 2: Andreev-Kingkade formulas for computing a0 given q0

q0 range formula: a0 = a+ b · q0

Males

[0, 0.0226) 0.1493− 2.0367 · q0
[0.0226, 0.0785) 0.0244 + 3.4994 · q0
[0.0785,∞) 0.2991

Females

[0, 0.0170) 0.1490− 2.0867 · q0
[0.0170, 0.0658) 0.0438 + 4.1075 · q0
[0.0658,∞) 0.3141

For both-sex cohort life tables, a0 is derived by taking the death-weighted average of the single-
sex a0 estimates, as per equation (74), and then m0 is derived using equation (84).

Closing out cohort lifetables: If some members of a cohort are still alive at age 110, the above
formulas are used for ages x = 0, 1, . . . , 109 only. In this situation, for the open interval above age
110, we set

q110 = 1 (85)

∞m110 = ∞M110 =
∞D110

∞E110
(86)

∞a110 =
1

∞m110
. (87)

On the other hand, if the cohort dies out before age 110, the earlier de�nitions of qx, mx, and ax
are used up to and including the age of extinction (note that qx = 1 in the �nal age group, which
may be below 110) and all values are marked as missing at higher ages.

7.2.1 Multi-year cohorts

In the earlier section on death rates, we noted that death rates for multi-year intervals (either
periods or cohorts) are found by pooling deaths and exposures �rst and then dividing the former by
the latter. We now describe methods for computing cohort probabilities of death for time periods
longer than one year using a similar principle (see Pressat (1972)).

Consider the example of an n-year birth cohort in the age interval from x to x+1. Let Ṗ denote
the sum of the January 1st population estimates for the n individual birth cohorts when they are
aged x. Likewise, let ḊL and ḊU denote the sums of lower and upper triangle deaths within the
same age interval for the same group of cohorts (see Figure 11 for an illustration in the case where
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n = 5). Therefore, the probability of death for this n-year cohort is

qx = 1− Ṗ − ḊU

Ṗ + ḊL

=
ḊL + ḊU

Ṗ + ḊL

. (88)

Figure 11: Illustration of �ve-year cohort (assuming no migration)

t t+5 Time

x

x+1

Age

P-DU
• •

P+DL
• •

Using this notation, the death rate for this n-year cohort is

mx = Mx =
ḊU + ḊL

Ėc
, (89)

where Ėc is the sum of the cohort exposure parallelograms in the n-year cohort, according to the
formulas described in equation (60).

The average time lived in the interval of those dying in the interval is:

ax =

∑n−1
i=0

{
zL(x, t+ i)DL(x, t+ i) +

[
1− zU (x, t+ i+ 1)

]
DU (x, t+ i+ 1)

}
ḊL + ḊU

. (90)

It is easy to con�rm that the relationship between these three quantities obeys the classical formula
exactly. As with single-year cohorts, however, we compute a0 using the revised Andreev-Kingkade
procedure described in the last section.

7.2.2 Almost-extinct cohorts

The above description assumes that all members of a cohort have died before we compute its life
table. However, it is often desirable to compute life tables for cohorts that are almost extinct.
Suppose that tn denotes the last moment of the observation period and that the age of a cohort
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is x∗ at time tn. In order to compute a life table for this cohort, it is necessary to make some
assumption about mortality at ages x ≥ x∗. A simple solution is to assume that the cohort's deaths
and exposures at these ages will equal the average of those quantities for the most recent �ve-year
cohort for which such values are observed, as depicted schematically in Figure 12. Thus, the values
of mx, ax, and qx for an almost extinct cohort at ages x ≥ x∗ are identical to those of a �ve-year
cohort of comparable age observed just before time tn.

Figure 12: Life table calculations for almost-extinct cohorts
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It is important to de�ne some minimal value of x∗ that is acceptable when making such calcu-
lations. For life tables that begin at age 0, we require that the total �ctitious exposure (for ages
x ≥ x∗) be no more than one percent of the total lifetime exposure (in person-years lived) for the
cohort. For life tables that begin at some age above 0, the �ctitious exposure should be no more than
one percent of the total exposure above the starting age. Figure 13 depicts life table calculations
for �ve birth cohorts aged x∗ to x∗ + 4 at time tn.
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A small problem is that this method may produce qx = 1 at some high age, even though there
are some non-zero death and exposure counts at higher ages still. This is possible because the data
at di�erent ages refer to di�erent groups of cohorts. In this situation, we have chosen to terminate
the life table for an almost-extinct cohort at the lowest age where qx = 1.

Figure 13: Life table calculations for almost-extinct cohorts aged x∗ to x∗ + 4 in year tn
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7.3 Abridged life tables

Abridged tables in the HMD are always extracted directly from complete single-age tables. This
process can be described in just two steps. 1) Extract values of lx, Tx, ex for the abridged table
directly from the complete table, and 2) compute the remaining values from these:

nLx = Tx − Tx+n (91)

ndx = lx − lx+n (92)

nqx =
ndx
lx

(93)

nax =

{
nLx−n·lx+n

ndx
for nDx > 0

n
2 for nDx = 0

, (94)

where nDx are death counts in the age interval [x, x+n). For such calculations, x = 0, 1, 5, 10, 15, . . . , 110.
Of course, n = 5 except at both extremes of the age range. For the open interval, n =∞ and q∞ = 1.
Therefore, where x∗ is the lower age limit of the open age interval, we close out the abridged table
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using: ∞Lx∗ = ∞Tx∗ , ∞qx∗ = 1, ∞dx∗ = lx∗ , ∞mx∗ = lx∗
∞Tx∗

= 1
ex∗

(i.e., the constant hazard in the

open interval equals the reciprocal of remaining life expectancy at age x∗), and ∞ax∗ = ex∗ .
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Appendix A Linear model for splitting 1Ö1 death counts

Two equations are given in the main text for use in splitting death counts into Lexis triangles based
on deaths counts in 1Ö1 Lexis squares (see equations 4 and 7). These equations were derived from
a multiple regression analysis, as summarized in Table A-1. In this appendix, we give more detail
about the regression analysis, but without repeating formulas already presented in the main text.

The regression analysis was performed separately for men and women. The dependent variable
was the proportion of deaths occurring in the lower triangle out of the total in a 1Ö1 Lexis square,
or πd(x, t) (see equation 3). The analysis included data for ages 0�104 from Sweden (1901�1999),
Japan (1950�1998), and France (1907�1997). During these time periods, death counts in Lexis
triangles are available across the age range in the raw data with only minor exceptions.24 A series
of regression models was �tted by weighted least squares.

The weight associated with each observed value of πd(x, t) was de�ned as follows:

w(x, t) =
D(x, t)∑
xD(x, t)

. (A.1)

Thus, the total weight for a given country in a given year was one. Alternatively, we might
have used w(x, t) = D(x, t), motivated by the knowledge that the variability of πd(x, t) is inversely
related to D(x, t). However, such a choice also has the e�ect of giving much more weight to the
most populous country, Japan, which then dominates the analysis. The weights used here accord
an equal importance to each country-year included in the analysis, while at the same time giving
more weight within each country-year to observations derived from larger numbers of deaths.

The variables included in the models were chosen after an extensive exploratory analysis. Model
I includes only age e�ects, which re�ect the changing level of πd(x, t) across the age range and
explain around 70 percent of the variability in the dependent variable. The proportion of births
associated with the lower triangle, πb(x, t) (see footnote 12 and equation (5)), improves the �t
further, as seen in Model II. The Spanish �u epidemic during the winter of 1918�1919 had the e�ect
of increasing the proportions of lower-triangle deaths in 1918 (which includes more deaths from the
second half of the calendar year) and of upper-triangle deaths in 1919 (for the opposite reason).
Since this was a global epidemic, it seems reasonable to extrapolate the experience of Sweden and
France (Japanese data begin later) onto the rest of the populations in the HMD.

For most age groups, the dependent variable, πd(x, t), has tended to increase over time, pre-
sumably in relation to changing levels and patterns of mortality. Partly as a matter of convenience,
the infant mortality rate (IMR) was chosen to serve as a proxy variable for these sorts of temporal
changes (Model IV). The IMR is convenient for this purpose because it can be estimated using only
birth and infant death counts by calendar year. As explained in the main text, we used a simple
method proposed by Pressat (1980) for computing the IMR. In this method, the denominator of the

24The available French data are not classi�ed by Lexis triangle above age 100 for some years (1934�35, 1947, 1949,
1954, and 1956�67). In these cases, the data used as an input to the regression analysis had already been split into
triangles by some method (in the data �le provided by Jacques Vallin and France Meslé). Ideally, such data should
have been excluded from this regression analysis. However, given the small number of observations involved and their
small weight in the total analysis, their exclusion would have had only a minor e�ect on the estimated coe�cients,
and then only for the age group 100�104. On the other hand, the computer programming was simpli�ed by leaving
these observations in the analysis, and so they were included.
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IMR is composed of two-thirds of the births from the current year plus one-third of the births from
the previous year, since infant deaths in the current year are derived from both of these cohorts
(although more were born in the current year than in the previous one).

The logarithmic transformation was used because it makes the relationship between the IMR and
πd(x, t) more nearly linear across a broader range of observations. Even with this transformation,
however, two other adjustments were needed to obtain a model that re�ects well the patterns in
the raw data. First, in Model VII (not shown here), we tested for possible interactions between
log IMR and each age group. These interaction terms were statistically and practically signi�cant
for ages zero and one only (Model V). Second, at age zero the relationship between log IMR and
πd(x, t) seems to turn around at very low values of the IMR. Therefore, we added an interaction
term (for this age only) between log IMR and a dummy variable to indicate when the IMR is below
0.01 (Model VI). This cut-o� level was chosen to maximize the R-squared statistic. For both males
and females, R-squared obtained a maximum value (with four decimal points of precision) for a
cut-o� value in the range of 0.009 to 0.011, approximately. Therefore, the value of 0.01 was used
for both sexes.

The color graphs on the following pages show actual values of πd(x, t) at ages 0 and 80 for
the three countries, along with predictions from the model. For each age, two graphs are shown,
depicting the changes in πd(x, t) as a function of both time and log IMR. In the graphs organized by
time, we also show the predicted trend in πd(x, t) for Sweden prior to the observation period, since
the infant mortality rate was available back to 1751 and a birth series back to 1749. As illustrated
by these graphs, the average value of πd(x, t) stabilizes at high values of IMR (due to the logarithmic
transformation), so there should be no problem with applying this model to historical periods. In
the backwards extrapolation for age 80, the lack of a birth series prior to 1749 is immediately
apparent. For earlier cohorts, it was necessary to assume a constant cohort size, resulting in a loss
of variability in predicted πd(x, t).
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Figure A.1: Proportion of deaths in lower triangle by IMR, males age 0
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Figure A.2: Proportion of deaths in lower triangle, males age 0
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Figure A.3: Proportion of deaths in lower triangle by IMR, males age 80
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Figure A.4: Proportion of deaths in lower triangle, males age 80
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Table A.1: Linear models of the proportion of lower-triangle deaths a

Females (n = 25,017)b

Null I II III IV V VI

Intercept 0.5104 0.5170 0.5172 0.5163 0.4712 0.4724 0.4710

Age Groups c

0 0.2285 0.2295 0.2299 0.2368 0.0697 0.0392

1 0.0462 0.0480 0.0479 0.0570 0.1351 0.1365

2-4 -0.0003 0.0011 0.0006 0.0084 0.0116 0.0130

5-9 -0.0101 -0.0092 -0.0100 -0.0029 0.0004 0.0018

10-14 -0.0254 -0.0246 -0.0258 -0.0186 -0.0154 -0.0140

15-19 -0.0242 -0.0235 -0.0249 -0.0181 -0.0149 -0.0135

20-24 -0.0162 -0.0159 -0.0171 -0.0108 -0.0074 -0.0061

25-29 -0.0141 -0.0137 -0.0151 -0.0093 -0.0059 -0.0046

30-34 -0.0127 -0.0126 -0.0137 -0.0090 -0.0055 -0.0041

35-39 -0.0153 -0.0152 -0.0157 -0.0123 -0.0086 -0.0072

40-44 -0.0142 -0.0142 -0.0142 -0.0123 -0.0084 -0.0070

45-49 -0.0131 -0.0134 -0.0131 -0.0126 -0.0085 -0.0071

50-54 -0.0136 -0.0142 -0.0138 -0.0140 -0.0098 -0.0084

55-59 -0.0140 -0.0145 -0.0140 -0.0148 -0.0105 -0.0091

60-64 -0.0180 -0.0185 -0.0179 -0.0191 -0.0148 -0.0134

65-69 -0.0215 -0.0221 -0.0215 -0.0233 -0.0189 -0.0175

70-74 -0.0233 -0.0240 -0.0234 -0.0260 -0.0215 -0.0201

75-79 -0.0251 -0.0258 -0.0251 -0.0291 -0.0244 -0.0230

80-84 -0.0235 -0.0240 -0.0233 -0.0294 -0.0245 -0.0231

85-89 -0.0165 -0.0173 -0.0165 -0.0253 -0.0201 -0.0187

90-94 -0.0066 -0.0073 -0.0065 -0.0181 -0.0125 -0.0112

95-99 0.0055 0.0047 0.0055 -0.0086 -0.0027 -0.0014

100-104 0.0274 0.0267 0.0275 0.0114 0.0176 0.0190

Birth proportion � 0.5 d 0.7255 0.7220 0.7357 0.7377 0.7372

Year = 1918 0.0887 0.1019 0.1023 0.1025

Year = 1919 -0.0379 -0.0243 -0.0239 -0.0237

log IMR -0.0127 -0.0111 -0.0112

(log IMR) Ö (Age = 0) -0.0571 -0.0688

(log IMR) Ö (Age = 1) 0.0268 0.0268

(log IMR � log 0.01) Ö

(Age = 0) 0.1526

R2 e 0.0000 0.7113 0.7362 0.7558 0.7941 0.8170 0.8192

a.All models were �t by weighted least squares, with weights equal to the number of deaths in a 1Ö1
Lexis square divided by the total deaths for that country in that year. Thus, the total weight for each
country-year combination is one (see main text of Appendix A for discussion).

b.All models were �t to data for ages 0-104 for Sweden (1901-1999), Japan (1950-1998), and France
(1907-1997), after eliminating 78 observations with zero deaths in the 1x1 Lexis square.

c. Since coe�cients for age groups are constrained to sum to zero, there is no omitted category.

d.The birth proportion equals the number of births in the younger cohort (born in t) divided by the
total for the younger and older cohort (born in t-1 ). Data are centered about 0.5 (i.e., 0.5 is
subtracted from the birth proportion for each observation).

e.R-squared here is the proportion of weighted variance (about the weighted mean) explained by the
model.
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Table A.2: Linear models of the proportion of lower-triangle deaths a

Males (n = 24,872)b

Null I II III IV V VI

Intercept 0.5176 0.5226 0.5226 0.5223 0.4831 0.4853 0.4838

Age Groups c

0 0.2294 0.2300 0.2304 0.2371 0.0555 0.0230

1 0.0370 0.0382 0.0385 0.0469 0.1234 0.1249

2-4 -0.0044 -0.0034 -0.0033 0.0035 0.0071 0.0086

5-9 -0.0088 -0.0080 -0.0080 -0.0021 0.0016 0.0031

10-14 -0.0200 -0.0193 -0.0194 -0.0139 -0.0101 -0.0086

15-19 -0.0274 -0.0269 -0.0274 -0.0230 -0.0190 -0.0175

20-24 -0.0056 -0.0057 -0.0069 -0.0019 0.0020 0.0035

25-29 -0.0014 -0.0006 -0.0019 0.0027 0.0066 0.0081

30-34 -0.0056 -0.0053 -0.0062 -0.0025 0.0016 0.0031

35-39 -0.0145 -0.0143 -0.0148 -0.0124 -0.0080 -0.0065

40-44 -0.0189 -0.0188 -0.0188 -0.0179 -0.0132 -0.0117

45-49 -0.0210 -0.0212 -0.0210 -0.0212 -0.0163 -0.0148

50-54 -0.0201 -0.0204 -0.0202 -0.0211 -0.0160 -0.0145

55-59 -0.0195 -0.0197 -0.0194 -0.0209 -0.0157 -0.0142

60-64 -0.0206 -0.0208 -0.0205 -0.0225 -0.0172 -0.0157

65-69 -0.0221 -0.0225 -0.0222 -0.0247 -0.0193 -0.0179

70-74 -0.0236 -0.0241 -0.0238 -0.0268 -0.0213 -0.0198

75-79 -0.0255 -0.0260 -0.0257 -0.0294 -0.0238 -0.0223

80-84 -0.0240 -0.0244 -0.0241 -0.0289 -0.0231 -0.0216

85-89 -0.0169 -0.0176 -0.0173 -0.0236 -0.0175 -0.0160

90-94 -0.0077 -0.0085 -0.0081 -0.0162 -0.0098 -0.0083

95-99 0.0063 0.0054 0.0057 -0.0043 0.0024 0.0039

100-104 0.0348 0.0339 0.0343 0.0229 0.0299 0.0313

Birth proportion � 0.5 d 0.6798 0.6778 0.6929 0.6992 0.6992

Year = 1918 0.0611 0.0725 0.0725 0.0728

Year = 1919 -0.0481 -0.0362 -0.0355 -0.0352

log IMR -0.0108 -0.0088 -0.0088

(log IMR) Ö (Age = 0) -0.0620 -0.0745

(log IMR) Ö (Age = 1) 0.0259 0.0259

(log IMR � log 0.01) Ö

(Age = 0) Ö ( IMR < 0.01 ) 0.1673

R2 e 0.0000 0.6963 0.7163 0.7264 0.7492 0.7743 0.7768

See notes for Table A.1
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Appendix B Computational methods for �tting cubic splines

B.1 Splitting nx1 data into 1x1 format

Aggregated death counts are split into a 1x1 format using cubic splines �tted to the cumulative
distribution of deaths within each calendar year. Let Y (x) =

∑x−1
u=0Du be the cumulative number of

deaths up to age x, and assume that Y (x) is known for a limited collection of ages always including
x = 1 and x = 5. Following McNeil et al. (1977), we �t a cubic spline to Y (x) in the form of the
following equation:

Y (x) = α0 + α1x+ α2x
2 + α3x

3 + β1(x− k1)3I(x > k1) + · · ·+ βn(x− kn)3I(x > kn) , (B.1)

where α0, . . . , α3, β1, . . . , βn are coe�cients that must be estimated. The indicator function,
I(.), equals one if the logical statement within parentheses is true and zero if it is false. Along the
x-axis, there are n �knots� denoted by ki, i = 1, . . . , n, and lower and upper boundaries denoted by
a and b, respectively. In general, the knots are those values of x for which Y (x) is known from the
data, except for the lowest and highest such values.

We require that k1 = 1, and kn equals the lower limit of the open age interval. We always have
a = 0 and b = ω, where ω is set arbitrarily to the maximum of 105 or kn + 5.25 Thus, we know
n+ 2 values of Y (x), for x = 0, 1, . . . , kn, and ω, but the above equation contains n+ 4 unknown
parameters. Therefore, two additional constraints are needed in order to compute the coe�cients.
Typical solutions usually involve constraining the slope of the function at the boundaries. At the
upper boundary, for example, we constrain the slope to be zero. Thus, Y ′(ω) = 0. This choice is
consistent with the usual tapering of the distribution of deaths at the oldest ages. However, a similar
constraint at the lower boundary would not be appropriate, since deaths are highly concentrated at
age 0. Instead, we constrain the slope of the function at age 1 to equal one half the increment (in

cumulative deaths) between ages 1 and 5. Thus, Y ′(1) =
Y (5)− Y (1)

2
. Since Y ′(1) ≈ D(1), this

formula is based on the observation that about half of all deaths between ages 1 and 5 tend to occur
during the second year of life (at all levels of mortality). The �rst derivative of Y (x) is as follows:

Y ′(x) = α1 + 2α2x+ 3α3x
2 + 3β1(x− k1)2I(x > k1) + · · ·+ 3βn(x− kn)2I(x > kn) . (B.2)

Fitting the cubic spline function consists of solving a system of n+ 4 linear equations. These

25Note that this choice makes no di�erence, since we do not use the �tted spline curve to split death counts in the
open age interval anyway.

- 50 -



Last Revised: January 26, 2021 (Version 6)

equations can be written as follows:

1 0 0 0 0 0 · · · 0 0

1 k1 k21 k31 0 0 · · · 0 0

1 k2 k22 k32 (k2 − k1)3 0 · · · 0 0
...

...
...

...
...

...
. . .

...
...

1 kn k2n k3n (kn − k1)3 (kn − k2)3 · · · (kn − kn−1)3 0

1 ω ω2 ω3 (ω − k1)3 (ω − k2)3 · · · (ω − kn−1)3 (ω − kn)3

0 1 2 3 0 0 · · · 0 0

0 1 2ω 3ω2 3(ω − k1)2 3(ω − k2)2 · · · 3(ω − kn−1)2 3(ω − kn)2





α0

...

α3

β1
...

βn


=



0

Y (1)
...

Y (kn)

Y (ω)

[Y (5)− Y (1)] /2

0


(B.3)

Writing this equation as Ac = d, the vector of coe�cients can be found by computing c = A−1d.
Once the coe�cients are computed by this method, the estimated equation is used to �nd �tted
values, Ŷ (x), for x = 0, 1, 2, . . . , kn. For all ages below the open age interval, deaths by single years
of age are estimated by di�erencing:

D̂x = Ŷ (x+ 1)− Ŷ (x) , (B.4)

for x = 0, 1, 2, . . . , kn−1.
The choice of constraints is very important. One drawback of the spline method is that the �tted

curve may not be monotonically increasing over all ages. Since the curve depicts the cumulative
deaths over age, a decreasing function between ages x and x+1 implies negative death counts at
age x. We have tried to choose constraints that minimize the possibility of such an occurrence.
Nevertheless, there seems to be no reliable solution at the oldest ages, and the spline function often
starts to decline within the open age group. For this reason, we use a di�erent method for splitting
deaths from an open age interval into �ner categories. Fortunately, the constraint applied to the
slope at age 1 seems to work in all cases, yielding a curve that is always monotonically increasing
at younger ages.

B.2 Splitting period-cohort data covering multiple cohorts

With minor modi�cations, the method described above can be used to split period-cohort data
covering multiple cohorts (usually in the shape of a parallelogram) into data for single-year birth
cohorts. For example, suppose we know the values of Y (1), Y (4.5), Y (9.5), . . . , Y (99.5), where by
de�nition Y (x+ 1

2) =
∑x−1

j=0 [DL(j) +DU (j)]+DL(x) is the cumulative number of deaths up to and
including the lower triangle of age x. Then, we can �t a cubic spline with knots at those values.
Because Y (4.5) is known instead of Y (5), we use a modi�ed constraint: Y ′(1) = Y (4.5)−Y (1)

1.83 .26

26This modi�cation derives from assuming that the deaths between exact ages 2 and 5 are uniformly distributed.
Following our earlier logic, these deaths comprise half of all deaths between ages 1 and 5. If they are uniformly
distributed, losing the upper triangle at age 4 means we are missing 1

2
· 1
6
= 1

12
of all deaths between ages 1 and 5.

Thus, we have: Y
′
(1) = Y (5)−Y (1)

2
=

12
11

[Y (4.5)−Y (1)]

2
= Y (4.5)−Y (1)

1.83
.
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From the �tted values, Ŷ (x + 1
2), we obtain estimates of deaths for single-year cohorts by

computing �rst di�erences. Then, following our usual practice, the resulting period-cohort death
counts are split 50/50 to obtain estimated death counts by Lexis triangle. These two steps can be
summarized as follows:

D̂U (x) = D̂L(x+ 1) =
1

2

[
Ŷ (x+

3

2
)− Ŷ (x+

1

2
)

]
, (B.5)

for x ≥ 1 .
Finally, we derive D̂L(1) = Ŷ (1.5)−D(0).
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Appendix C Method for splitting deaths in an open age interval

Our method for splitting deaths in an open age interval treats deaths above age x∗ − 20 as though
they come from a stationary population (where x∗ is the lower boundary of the open age interval).
Accumulating deaths backwards from the open age interval within a given calendar year, we divide
by all deaths at ages x∗ − 20 and older to get the observed cumulative proportion of deaths in that
range that lie above age x∗i :

S(x∗ − i) =
∞Dx∗−i

∞Dx∗−20
, (C.1)

for i = 0, 1, . . . 20, where ∞Dx∗−i is the number of deaths in the age interval from age x∗ − i
and above (including the open age interval). This procedure yields a �ctitious survival function
(conditional on survival to age x∗ − 20), corresponding to a kind of �synthetic extinct cohort� (i.e.,
an extinct cohort based on period death counts).

We �t the Kannisto model of old-age mortality (Thatcher et al., 1998) to this �ctitious survival
function. The Kannisto model has the following form:

µ(x) =
aeb(x−x0)

1 + aeb(x−x0)
, (C.2)

where x0 = x∗ − 20, and a and b are unknown parameters. The corresponding survival function is
given by:

s(x) =

(
1 + a

1 + aeb(x−x0)

)1/b

. (C.3)

To summarize, we treat deaths within the calendar year as though they occurred in a stationary
population with an age-speci�c pattern of mortality following the Kannisto model. Therefore, by
assumption, the predicted proportion of deaths in the population above age x is:

Ŝ(x) = ŝ(x), for x = x0, x0 + 1, . . . , ω . (C.4)

We �t the model in order to estimate parameters a and b.27 Using equation (C0) and these
estimates of â and b̂, we predict:

d(x) = ŝ(x)− ŝ(x+ 0.5), for x = x∗, x∗ + 0.5, x∗ + 1, x∗ + 1.5, . . . , ω . (C.5)

Then, we apply these d(x) to ∞Dx∗ (and divide by the proportion surviving to age x∗) in order
to derive the distribution of deaths by Lexis triangle within the open age interval beginning at age
x∗:

D̂L(x) = ∞Dx∗ ·
d(x)

ŝ(x∗)
and D̂U (x) = ∞Dx∗ ·

d(x+ 0.5)

ŝ(x∗)
, for x = x∗, x∗ + 1, . . . .ω . (C.6)

If the estimated number of deaths in a given Lexis triangle is less than 0.25, we assume there
are no deaths in that triangle or above. The estimated deaths at ages below that triangle (within

27To �t the model, we minimize the squared di�erences between the logarithms of observed and predicted cumulative
proportions:

∑19
i=0[lnS(x

∗ − i)− ln Ŝ(x∗ − i)]2 stopping at i = 19 because S(x∗ − 20) and Ŝ(x∗ − 20) equal 1.0 by
de�nition.
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the open age interval) are then adjusted proportionally (i.e., multiplied by a constant) so that their
sum is equal to ∞Dx∗ . This entire procedure is applied separately to male and female death counts
and then total death counts are obtained by summing.

C.1 Correction for Unusual Fluctuations in Deaths

In some cases, there may be an unusual �uctuation in death counts within the age range (from
x∗ − 20 to x∗) used to �t the Kannisto model. For example, a cohort in this age range may be
particularly small relative to nearby cohorts because of some historical event (e.g., a war) and thus,
experience fewer deaths. In such cases, we may want to exclude that outlier before �tting the model,
or else we are likely to under-estimate the number of deaths at the start of the open age interval.
In order to avoid this problem, we introduce a correction to the method described above. Prior to
�tting the model, we �rst apply a procedure to identify any outliers, and if found, exclude the age
range associated with the period of unusual �uctuations before �tting the model. In our experience,
unusually small cohort sizes in�uence model �tting much more than unusually large cohorts, and
so we only remove these. The procedure for identifying outliers proceeds as follows:

1. We calculate �rst di�erences in deaths ∆D(x):

∆D(x) = D(x+ 1)−D(x), for x = x∗ − 25, x∗ − 24, . . . , x∗ − 2 . (C.7)

Figure C-1 shows an example where ∆D(80) has a large negative value (i.e., there was a large
decrease in deaths between ages 80 and 81) and ∆D(84) has a large positive value (i.e., there
was a large increase in deaths between ages 84 and 85).

2. We identify the trend in ∆D(x) by �tting a cubic smoothing spline that minimizes the fol-
lowing function:

p

x∗−2∑
x=x∗−25

(∆D(x)− f(x))2 + (1− p)
x∗−2∫

x∗−25

[
f ′′(x)

]2
dx , (C.8)

where p is the smoothing parameter and f(x) is a standard cubic spline function (e.g., see
McNeil et al., 1977 and equation B.1). As p tends toward 0, the result approaches the least-
squares linear �t (i.e., a straight line), whereas for p = 1, the result is the natural cubic spline.
As p varies from 0 to 1, the result moves from one extreme to the other. We use p = 0.0005
because it provides a suitable compromise between a trend that would identify too many
�uctuations as outliers (e.g., linear �t) and one that requires the trend to pass through each
of the observed data points (i.e., no outliers are identi�ed). Figure C.1 shows the trend f(x)
plotted against observed values of ∆D(x).

3. We de�ne ∆D(x) to be an outlier if:

|∆D(x)− f(x)| > 1.8σ , (C.9)
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Figure C.1: First di�erences in deaths, West German females, 1999
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where σ represents the standard deviation of the di�erence between ∆D(x) and f(x). Fig-
ure C.1 shows f(x)± 1.8σ. Any ∆D(x) that falls outside the range of plus or minus 1.8
standard deviations is de�ned as an outlier (e.g., ∆D(80) and ∆D(84) in this example).28

4. The age range associated with each period of unusual �uctuations will be identi�ed by two
outliers on ∆D(x): one at the age where the largest negative outlier �uctuation begins xmin

and ∆D(xmin) < 0, and one at the age where the largest positive outlier �uctuation ends xmax

and ∆D(xmax) > 0. We then substitute the interpolated values, based on a cubic smoothing
spline similar to equation C.8), for all observations from ages xmin to xmax before �tting
the model.29 So, in this example, we substitute the estimated proportion of survivors for
the observed proportion of survivors S(80), S(81), . . . , S(84) (see equation C.8) before �tting

28We designed this procedure using data for France, Sweden, and Czech Republic. Based on visual inspection of
the data, we identi�ed observations that appeared to be outliers. Then, we set the parameters (p = 0.0005 and
+1.8σ) for the procedure such that we detected all �real� outliers (based on our subjective evaluation), but minimized
the number of false positives. Nonetheless, in most cases, treating �false positives� as outliers did not change the
mortality estimates, whereas excluding �real� outliers had a substantial e�ect on the estimates. The procedure has
been tested for all HMD populations and yields satisfactory and consistent results.

29We only subistute the model values if the total age-span of the detected unusual �uctuation is less than 8 and if
the total number of outlier deviations is less than 5.
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the model, using D̃(81), D̃(82), . . . , D̃(85) instead of D(81), D(82), . . . , D(85), where D̃(x) is
derived by minimizing the following function:

x∗−1∑
x=x∗−25

(D(x)− f(x))2 + (1− p)
x∗−1∫

x=x∗−25

[
f ′′(x)

]2
dx. (C.10)

C.2 Correction for Cohort Size

Another potential problem with the basic method for splitting the open age interval is that some-
times deaths for a particular cohort within the open age interval may be under- or over-estimated
by the model as a result of variations in cohort size. For example, a cohort may be unusually small
(e.g., those born in time of war) relative to other cohorts in that same period; if that cohort falls
within the open age interval, then the model may over-estimate deaths for that cohort. To address
this problem, we make a �nal correction for cohort size after splitting deaths in the open age interval
as described above. This correction essentially redistributes deaths to take account of the size of
each respective cohort relative to other nearby cohorts within the open age interval.

For each cohort born in year t− x, where x is the age at last-birthday on December 31st of year
t for x ≥ x∗, we perform the following steps:

1. We compare deaths for that cohort in the year in which they would attain age x∗ − 1 relative to
the average of deaths at the same age among nearby cohorts. For example, for x = x∗ + 3 (the
cohort represented by the period-cohort parallelogram in yellow in Figure C-2), we compute
the ratio of deaths for that same cohort in year t− 4 (in the uppermost red parallelogram)
to the average of deaths at the same age for the two previous cohorts and two later cohorts
(shown in blue). If all �ve cohorts had the same number of deaths in the years they would
attain age x∗ − 1, then the resulting ratio would be 1.0.

2. We calculate similar ratios for ages x∗ − 5 through x∗ − 2 (as depicted in Figure C-2).

3. Then, we take the average of the ratios across these �ve age years (x∗ − 5 to x∗ − 1) as an
estimate of the size of this cohort relative to nearby cohorts.

4. Next, we multiply the original estimate of deaths in the open age interval (derived using meth-
ods described in previous sections) by this adjustment ratio. Following the earlier example,
the adjustment ratio based on the deaths shown in red in Figure C.2 is applied to the original
estimates of DU (x∗ + 2, t) and DL(x∗ + 3, t) shown in yellow.

5. Finally, we make one last minor adjustment to ensure that the estimates add up to the original
sum in the open age interval.

Of course, this procedure requires that the data are available to make these calculations. For
the example shown in Figure C-2), we could not complete the calculations described above if the
data series began in year t− 4. Therefore, given the estimate of DU (x− 1, t) where x− 1 ≥ x∗, or
DL(x, t) where x ≥ x∗, we make no correction for cohort size if tmin ≥ t− (x− x∗), where tmin is
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the �rst year of the data series. Furthermore, if the original raw death counts for the period used to
make these calculations are not available by (at least) one-year age groups, we make no correction
for cohort size.

Given that tmin < t− (x− x∗), following the �ve steps listed above, we adjust the original
estimates of DU (x− 1, t) and DL(x, t) as follows in order to correct for �uctuations in cohort size:

D̂U (x− 1, t) = r(x) ·DU (x− 1, t), for x = x∗ + 1, x∗ + 2, . . . , ω (C.11)

and
D̂L(x, t) = r(x) ·DL(x, t), for x = x∗, x∗ + 1, x∗ + 2, . . . , ω, (C.12)

where

r(x) =
1

n

n∑
j=1

r(x)j , (C.13)

n = min(t− tmin − (x− x∗), 5), (C.14)

r(x)j =
DU [x∗ − j − 1, t− j − (x− x∗)] +DL[x∗ − j, t− j − (x− x∗)]∑x+1

i=x−m (DU [x∗ − j − 1, t− j − (i− x∗)] +DL[x∗ − j, t− j − (i− x∗)])/ (l +m+ 1)
,

(C.15)
where

l = min(t− tmin − j − (x− x∗)), 2), (C.16)

and
m = min(x− x∗, 2). (C.17)

Then, we calculate the �nal estimates D̃U (x− 1, t) and D̃L(x, t) using the following adjustment
to ensure that they sum to the original death count in the open age interval:

D̃U (x− 1, t) = D̂U (x− 1, t) · ∞Dx∗(t)∑ω
i=x∗ [D̂L(i, t) + D̂U (i, t)]

(C.18)

and

D̃L(x, t) = D̂L(x, t) · ∞Dx∗(t)∑ω
i=x∗ [D̂L(i, t) + D̂U (i, t)]

(C.19)
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Figure C.2: Example depicting the procedure to correct for cohort size
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Appendix D Adjustments for changes in population coverage

Some of the countries included in the HMD have experienced changes in their territorial boundaries.
These changes must be taken into account when computing death rates and life tables (unless the
changes are very small in relation to population size). In general, death counts must always refer to
the same territory as the exposure-to-risk when calculating death rates. Likewise, when using birth
counts as a measure of relative cohort size (in splitting 1x1 death counts into Lexis triangles), the
birth series must refer to the same territory. With these principles in mind, we make some special
calculations for countries with changing territories during the time period covered by the HMD.

Before describing these calculations, let us consider the format of the relevant data. Although
territorial changes may occur at any time during a calendar year, administrative data (i.e., birth and
death counts) typically re�ect such changes on January 1st. Therefore, throughout this discussion
we assume that the territorial change occurs on January 1st and that birth and death counts within
an individual calendar year always refer to an unchanging territory.

D.1 Birth counts used in splitting 1x1 deaths

As described earlier, we use a birth series as a measure of relative cohort size as part of our method
for splitting 1x1 death data into triangles. Suppose that this birth series is based on a changing
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territory. Then, the size of two successive cohorts may appear to change merely as a result of past
territorial changes. If we use such a series in our calculations, we will introduce �arti�cial cohort
e�ects� into our estimated death counts. Therefore, we adjust the birth series so that it refers to
the same territory.

Suppose that a territorial change occurs on January 1st of year t. De�ne

Rb(t) =
B+

B−
(D.1)

to be the ratio of births in the new territory, B+, to births in the old territory, B−, either in year t
or t−1 (see below). Therefore, in order to calculate Rb(t) for the period covered by the birth series,
we need birth data for the territory gained or lost during each territorial change. If territory was
gained in year t, then we base the calculation on the number of births in year t. B− is calculated as
the total births minus the births in the territory added, while B+ is simply the total births in year
t. On the other hand, if territory was lost in year t, then we base the calculation on the number of
births in year t− 1. B− is simply the total births (including the area lost) in year t− 1, while B+ is
calculated as the total births in year t− 1 minus the births for the territory lost.30 Thus, in either
case, the data for both the numerator and the denominator come from the same year (either t or
t− 1). For example, in 1954, the territory of Trieste was added to the Italian territory. Therefore,
we calculate Rb(1954) as the ratio of the births (in 1954) for the entire territory (including Trieste),
B+, to the births (in 1954) for the territory excluding Trieste, B−, resulting in Rb(1954) = 1.003.
If there was no territorial change in year t, then Rb(t) = 1.0 by default.

The formulas shown in equations 5 and 6 (p. 13) are then modi�ed as follows:31

πb(x, t) =
B(t− x)

B(t− x) +B(t− x− 1) ·Rb(t− x)
, (D.2)

and

IMR(t) =
D(0, t)

1
3B(t− 1) ·Rb(t) + 2

3B(t)
. (D.3)

Note that if there is no territorial change in year t− x, then Rb(t − x) = 1.0 by default and thus,
drops out of equation D.2 leaving it exactly as shown in equation 5. Similarly, if there is no territorial
change in year t, then Rb(t) drops out of equation D.3 and the result is identical to equation 6.

Ideally, we would like to have a birth series back to the earliest cohort for which we have death
data (≈ 100 years prior to the earliest calendar year of deaths). In that case, we need Rb(t) factors
back to the beginning of the birth series (if there were territorial changes). For example, suppose we
have death data for 1900�2000 in country X and there was a territorial change in 1850. Individuals
who died at age 50 in 1900 were born in either 1849 or 1850. In order to calculate the birth

30In some cases, the necessary birth data may not be available. In such cases, we simply use the population
adjustment factor at age 0 (see p. 60): Rb(t) = V (0, t).

31The birth ratio calculated in equation D.2 is used in order to split deaths in year t, based on data from the years
in which the respective cohorts were born (i.e., years t-x and t-x-1). Yet, if a territorial change occurred between
years t-x and year t, then the territory covered at the time of death, year t, is not the same as the territory covered
at the time these cohorts were born. Equation D.2 implicitly assumes that the birth ratio for the two cohorts is the
same for the territory covered in year t-x as in the territory covered in year t.
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proportion, πb(50, 1900), shown in (D.2), we need Rb(1850). Nonetheless, in many cases we will not
have birth data prior to the earliest death data, in which case we set πb(x, t) = 0.5 by default and
assume B(t− 1) = B(t) in order to calculate IMR(t) (see p. 13).

D.2 Extinct cohort methods

When we estimate population sizes using extinct cohort methods, we apply a di�erent form of
adjustment for territorial changes. Suppose that we are estimating P (x) by this method, and that
some territorial change occurs at time t. De�ne

V (x, t) =
P+(x)

P−(x)
(D.4)

to be the ratio of the population size at age x just after this change (i.e., on January 1st of year t)
to the comparable value just before the change (i.e., on December 31st of year t− 1).

For the country in question, we require population counts by age (and sex if available) for
the territory that is gained or lost during the territorial change as well as for the entire country.
Preferably, we use population estimates near the time of the territorial change, but sometimes we
may only have data from a census at time t∗ (close to the territorial change at time t). If a territory
was added, then we must use data from the subsequent census, whereas if territory was lost, then
we use data from the census prior to the territorial change.

In some cases, the available data may be aggregated into age groups, in which cases the V (x, t)
factor is calculated for the age group and then applied to each single year of age within that age
group. In fact, such data may be preferable because random variations across age are smoothed.
Therefore, even if data by single year of age are available, we may still calculate the V (x, t) factors
by �ve-year age groups. In any case, at very high ages (e.g., age 90 and older), the V (x, t) factor
is calculated using aggregate data even if data by single year of age are used at younger ages.
Aggregating across an open age interval at very old ages is necessary because the population counts
by single year of age can become very small at high ages, resulting in V (x, t) factors that are very
erratic (including even zero or unde�ned values). If data are not available by age, then we must use
V (t) calculated from the total population of all ages.

If there are no further territorial changes during the life of this cohort, then we estimate

P+(x, t) =
∞∑
0

Dv
i (x, t) (D.5)

and

P−(x, t) =
P+(x, t)

V (x, t)
, (D.6)

where
Dv

i (x, t) = DU (x+ i, t+ i) +DL(x+ i+ 1, t+ i) ,

as de�ned earlier in equation (8).
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Now, suppose there is no territorial change at time t, but rather at time t1, where t1 > t. De�ne
N1 = t1 − t (i.e., the time until the territorial change). We estimate P (x, t) as follows:

P (x, t) =

N1−1∑
i=0

Dv
i (x, t) +

1

V (x+N1, t1)

∞∑
i=N1

Dv
i (x, t) . (D.7)

If there is also a territorial change at time t, then this formula gives the value for P+(x, t).
For cohorts who live through more than one territorial change (at older ages), the above for-

mula requires a slight modi�cation. For example, assume that s territorial changes occur at times
t1, . . . , ts, where ts > · · · > t1 > t. De�ne N1 = t1 − t, . . . , Ns = ts − t. Then, we estimate P (x, t)
as follows:

P (x, t) =

N1−1∑
i=0

Dv
i (x, t) +

1

V (x+N1, t1)

N2−1∑
i=N1

Dv
i (x, t)

+
1

V (x+N1, t1)V (x+N2, t2)

N3−1∑
i=N2

Dv
i (x, t) + · · ·

+
1

V (x+N1, t1) · · ·V (x+Ns−1, ts−1)

Ns−1∑
i=Ns−1

Dv
i (x, t)

+
1

V (x+N1, t1) · · ·V (x+Ns, ts)

∞∑
i=Ns

Dv
i (x, t) .

(D.8)

D.3 Intercensal survival methods

When we estimate population sizes using intercensal survival methods, we apply a similar adjust-
ment for territorial changes. Referring to Figures 4a-c, suppose that a change in the territorial
coverage of vital statistics occurs on January 1st of year t1 = t+N1, where N1 ≤ N and N equals
the number of complete calendar years between the two censuses. Given V (x, t), de�ned as above,
the main formulas for existing cohorts (Figure 4a) would be modi�ed as follows:

Ĉ2 =

[
C1 − (Da −Db)−

N1−1∑
i=0

Dv
i (x, t)

]
· V (x+N1, t1)

− (Dc −Dd)−
N−1∑
i=N1

Dv
i (x, t)

(D.9)
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and

P (x+ n, t+ n) =



C1 − (Da −Db)−
n−1∑
i=0

Dv
i (x, t)

+
1− f1 + n

N + 1− f1 + f2
· ∆x

V (x+N1, t1)

for 0 ≤ n < N1

[
C1 − (Da −Db)−

N1−1∑
i=0

Dv
i (x, t)

]
· V (x+N1, t1)

+
1− f1 + n

N + 1− f1 + f2
∆x −

n−1∑
i=N1

Dv
i (x, t) .

for N1 ≤ n < N

(D.10)

Note that equation (D.10) provides two di�erent estimates of P (x + N1, t1), corresponding to
the territory covered by the statistical system just before and after January 1st of year t1 = t+N1.
Thus, P−(x+N1, t1) comes from the top part of the formula and P+(x+N1, t1) from the bottom
part, and it is easy to con�rm that P+(x+N1, t1) = P−(x+N1, t1) · V (x+N1, t1).

Similarly, for the infant cohort (Figure 4b), the modi�ed formulas are as follows:

Ĉ2 =

[
C1 −Da −

N1−1∑
i=0

Dv
i (0, t)

]
· V (N1, t1)

− (Dc +Dd)−
N−1∑
i=N1

Dv
i (0, t)

(D.11)

and

P (n, t+ n) =



C1 −Da −
n−1∑
i=0

Dv
i (0, t)

+
1
2(1− f21 ) + n

N + 1
2(1− f21 )) + f2

· ∆0

V (N1, t1)

for 0 ≤ n < N1

[
C1 −Da −

N1−1∑
i=0

Dv
i (0, t)

]
· V (N1, t1)

+
1
2(1− f21 ) + n

N + 1
2(1− f21 ) + f2

∆0 −
n−1∑
i=N1

Dv
i (0, t) .

for N1 ≤ n < N

(D.12)

Finally, we consider the case of new cohorts born during the intercensal period. For those born
after the territorial change (i.e., in calendar year t+N1 or later), the standard formulas can be used.
For those born before the territorial change, however, modi�ed formulas are needed. Consider the

- 62 -



Last Revised: January 26, 2021 (Version 6)

cohort born in year t+ j where 0 ≤ j < N1. As before, de�ne K = N − j − 1 (the age of the cohort
on January 1st before the second census). Also de�ne K1 = N1 − j − 1 (the age of the cohort on
January 1st of year t+N1). Then, the modi�ed formulas are as follows:

Ĉ2 =

[
Bt+j −DL(0, t+ j)−

K1−1∑
i=0

Dv
i (0, t+ j + 1)

]
· V (K1, t1)

− (Dc +Dd)−
K−1∑
i=K1

Dv
i (0, t+ j + 1)

, (D.13)

and

P (k, t+j+k+1) =



Bt+j −DL(0, t+ j)−
k−1∑
0

Dv
i (0, t+ j + 1)

+
2k + 1

2K + 1 + 2f2
·

∆′t+j

V (K1, t1)

for 0 ≤ k < K1

[
Bt+j −DL(0, t+ j)−

K1−1∑
i=0

Dv
i (0, t+ j + 1)

]
· V (K1, t1)

+
2k + 1

2K + 1 + 2f2
∆′t+j −

k+1∑
i=K1

Dv
i (0, t+ j + 1) .

for K1 ≤ k < K

.

(D.14)
Sometimes more than one territorial change occurs during an intercensal interval. In this situa-

tion, the formulas are only slightly more complicated. Suppose that s territorial changes occur at
times t1 = t+N1, . . . , ts = t+Ns. The formulas above are for the case where s = 1. If s = 2, the
formulas for existing cohorts would be as follows:

Ĉ2 =

[
C1 − (Da +Db)−

N1−1∑
i=0

Dv
i (x, t)

]
· V (x+N1, t1) · V (x+N2, t2)

−
N2−1∑
i=N1

Dv
i (x, t)V (x+N2, t2)−

N−1∑
i=N2

Dv
i (x, t)− (Dc +Dd)

(D.15)

and
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P (x+n, t+n) =



C1 − (Da +Db)−
n−1∑
i=0

Dv
i (x, t)

+
1− f1 + n

N + 1− f1 + f2
· ∆x

V (x+N, t1) · V (x+N2, t2)

for 0 ≤ n < N1

[
C1 − (Da +Db)−

N1−1∑
i=0

Dv
i (x, t)

]
· V (x+N1, t1)

+
1− f1 + n

N + 1− f1 + f2

∆x

V (x+N2, t2)
−

n−1∑
i=N1

Dv
i (x, t)

for N1 ≤ n < N2

[
C1 − (Da +Db)−

N1−1∑
i=0

Dv
i (x, t)

]
· V (x+N1, t1) · V (x+N2, t2)

−
N2−1∑
i=N1

Dv
i (x, t)V (x+N2, t2) +

1− f1 + n

N + 1− f1 + f2
∆x −

n−1∑
i=N2

Dv
i (x, t) .

for N2 ≤ n < N

(D.16)
These formulas can be adapted as well to cases where s > 2. Formulas for the infant cohort and

new cohorts receive similar modi�cations to adjust for territorial changes.

D.4 Linear interpolation

When we use linear interpolation to calculate population size on January 1st (for example, when
we have reliable population estimates referring to July 1st of each adjacent year), it is important
to ensure that both populations refer to the same territory. When a territorial change occurs on
January 1st of year t, we multiply the population estimate for the given date in year t−1 by V (x, t)
before performing linear interpolation. In this way, the population in year t-1 is adjusted to re�ect
the same territory as on January 1st of year t.

D.5 Period death rates around the time of a territorial change

In the event of a territorial change, the formula for the exposure-to-risk (shown in equation(50)),
which is used to calculate the period death rate, requires a minor modi�cation. Suppose there is a
territorial change on January 1st of year t + 1. The exposure-to-risk in the age interval [x, x + 1)
during calendar year t is then calculated as follows:

Ex = s1P
−(x, t+ 1) + s2DL(x, t) + u1P (x, t)− u2DU (x, t) . (D.17)

With an assumption of uniformity (of both birthdays and deaths), this becomes:

Ex =
[
P (x, t) + P−(x, t+ 1)

]
+

1

6
[DL(x, t)−DU (x, t)] , (D.18)
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where P−(x, t+ 1) is the population at age x just before the territorial change.

D.6 Cohort mortality estimates around the time of a territorial change

Territorial changes present a special problem for cohort life table calculations. Fortunately, the
solution is fairly simple. Let DL and DU be the cohort death counts at some age just before and
after a territorial change (assumed to occur on January 1st). Also, let P− and P+ be population

estimates (at the same age) just before and after this change. De�ne D∗U = P−

P+DU , which represents
the upper-triangle deaths that would have occurred in the original territory. D∗U substitutes into
the equation (60) as follows:

M c(x, t) =
DL(x, t) +D∗U (x, t+ 1)

P−(x, t+ 1) + zLDL(x, t)− zUD∗U (x, t+ 1)
. (D.19)

This raw death rate is then taken as the life table rate, mx. ax is calculated as:

ax =
zLDL(x, t) + (1− zU )D∗U (x, t+ 1)

DL(x, t) +D∗U (x, t+ 1)
. (D.20)

Assuming a uniform distribution of deaths within Lexis triangles, it follows that

M c(x, t) =
DL(x, t) +D∗U (x, t+ 1)

P−(x, t+ 1) + 1
3

(
DL(x, t)−D∗U (x, t+ 1)

) (D.21)

and

ax =
1
3DL(x, t) + 2

3D
∗
U (x, t)

DL(x, t) +D∗U (x, t+ 1)
. (D.22)

In both cases, qx =
DL(x,t)+D∗U (x,t+1)

P−(x,t+1)+DL(x,t)
.

These three quantities are mutually consistent, like other cohort quantities. Equivalent values

are obtained if instead we de�ne D∗L(x, t− 1) = P+(x,t)
P−(x,t)DL(x, t− 1), which represents the lower-

triangle deaths that would have occurred in the new territory, and compute using P+(x, t) instead
of P−(x, t).

D.7 Other changes in population coverage

Sometimes there may be changes in the coverage of demographic data that are not due to territorial
changes, but can be treated as such in order to make the appropriate adjustments to the formulas.
For example, in some countries the vital statistics collection system changed from covering the de

facto population to covering the de jure population at some time t. In order to account for this
change in the birth and death count data, we treat it as a territorial change and calculate V (x, t)
factors based on the de jure population and the de facto population at the time of the change in
population coverage. We then use V (x, t) as an estimate of Rb(t).
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Appendix E Computing death rates and probabilities of death

The purpose of this appendix is to describe and justify the methods used for computing death rates
and probabilities of death in the HMD. We consider the case where death counts are available by
Lexis triangles and population estimates are available by single years of age for individual calendar
years (see Figures 9 and 10 of the main text; also, see Appendices A and B for the methods
used to split 1Ö1 or 5Ö1 data, if needed). We begin by exploring the implications of assuming
uniform distributions of births and deaths, and show in that simple case how period death rates
and probabilities of death are derived. We then generalize the method for situations where we have
information about the distribution of births by month. Finally, we derive the main formulas for
cohort death rates and probabilities of death.

E.1 Uniform distributions of births and deaths

In the absence of contrary evidence we assume that births are distributed uniformly within a cal-
endar year. Also assuming equal survival probabilities to age x within the birth cohort, a uniform
distribution of births in year t − x implies a uniform distribution of birthdays at age x in year t.
With such assumptions, it follows that the average contribution to EL(x, t) by the N(x, t) persons
celebrating their birthday at age x in year t would be one half, if none dies before the end of the
year. Likewise, the average contribution to EU (x, t) by the N(x + 1, t) persons who survive to
celebrate their birthday at age x+ 1 in that year would also be one half.

We also often assume that deaths are distributed uniformly within individual Lexis triangles.
The main results following from this assumption are summarized in Table E.1. For example, with
assumptions of uniformity, deaths in the age interval [x, x + 1) occur, on average, at age x + 1

3 if
they occur in and at age x + 2

3 in . Deaths in either triangle contribute, on average, 1
3 of a

person-year of exposure within the triangle where the death occurred. At the same time, all deaths
result in, on average, an equivalent amount of lost exposure within their respective triangles (relative
to what the individual would have contributed if s/he had exited the triangle as a survivor).

These relationships are not necessarily intuitive and must be derived using calculus. The uni-
formity assumption implies that the probability density of deaths is 2 over the triangle (because
the total area is 1/2). The values in Table E.1 are then found by integrating over age and time. For

Table E.1: Implications of assuming uniform distributions of deaths
within Lexis triangles (at age x)

Lower triangle ● Upper triangle
●

Average age at death x+ 1
3 x+ 2

3

Average contribution (per death)
to exposure within triangle

1
3

1
3

Average lost exposure (per
death) within triangle

1
3

1
3
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example, the average age at death in a lower triangle, , is found by solving the following double
integral: ∫ 1

0

∫ t

0
2(x+ s) ds dt = x+

1

3
. (E.1)

Similarly, the average lost exposure for a death in the upper triangle, , is:∫ 1

0

∫ 1

t
2(1− s) ds dt =

1

3
. (E.2)

Thus, assuming uniform distributions for both births and deaths, and equal survival probabilities
within annual birth cohorts, the exposure to risk within the lower and upper triangles is as follows:

EL =
1

2
Nx −

1

3
DL =

1

2
(P2 +DL)− 1

3
DL =

1

2
P2 +

1

6
DL (E.3)

and

EU =
1

2
Nx+1 +

1

3
DU =

1

2
(P1 −DU ) +

1

3
DU =

1

2
P1 −

1

6
DU ,

where P1 and P2 are the population estimates for January 1 and December 31, respectively.

E.2
●

Period death rates and probabilities

As depicted in Figure 9 (main text), period death rates and probabilities of death are measured
over the 1Ö1 Lexis square, ● , that lies between exact ages x and x+ 1 during some calendar year.
Therefore, these quantities re�ect the blended experience of two birth cohorts. As explained in the
main text, we begin by computing the period death rate within ● , which we then convert to a
probability of death by assuming ax = 0.5 and using equation (71). Although this is a standard
method, it lacks the desirable property enjoyed by our method for computing cohort quantities,
since it is not reversible: if we begin by computing the probability of death directly from data and
converting it to a death rate, we obtain a slightly di�erent result. We adopt the method used here
because it includes an explicit calculation of the exposure-to-risk, which is needed for statistical
modeling, and because the link between death rates and probabilities of death is well de�ned.32

Our method for converting death rates into probabilities of death has already been described
in the main text. Furthermore, it is a familiar technique (Preston et al. 2001) and requires no
particular justi�cation here. Therefore, our only task in this section is to justify our method of
computing the exposure-to-risk that forms the denominator of the period death rate. As before,
we assume that there is no migration within ● and deal with the case of a closed population (the
error introduced by this assumption is usually negligible).

32It is common in the French demographic tradition to compute probabilities of dying directly from data, using
the method of partial quotients (Pressat 1972). In this tradition, death rates are also computed directly from data,
based on an explicit calculation of the exposure-to-risk. The main di�erence, relative to the method used here, is
that death rates and probabilities of death are not linked by an explicit formula. In practice, however, there is very
little di�erence between empirical results obtained using the two methods.
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E.2.1 Period death rates and probabilities under uniformity

To compute the exposure-to-risk in a 1Ö1 Lexis square, ● , we are often required to make an
additional assumption. Consider the N(x, t) individuals who attain exact age x and the N(x+ 1, t)
individuals who attain exact age x+ 1 in calendar year t (see Figure 9).

Suppose, in each case, that the birthdays of these individuals (at age x and x+1) are distributed
uniformly within the calendar year t. Then, neglecting deaths, theN(x, t) individuals who attain age
x in year t will contribute, on average, 1/2 of a person-year to exposure within the lower triangle, ● .
Likewise, the N(x+1, t) individuals who attain exact age x+1 in year t have already contributed, on
average, 1/2 of a person-year to exposure within the upper triangle,

●
. Thus, the major component

of the exposure-to-risk in this case would be N = 1/2 [N(x, t) +N(x+ 1, t)]. If the two distributions
of birthdays (at age x and x + 1) are not uniform within the calendar year but are nevertheless
similar to each other, then the correct multiplier would di�er only slightly from 1/2. This type
of mild non-uniformity can be safely ignored in computing the exposure-to-risk. However, larger
departures from this uniformity assumption can be more problematic.

In addition, the DL = DL(x, t) deaths in ● result in an average lost exposure of 1/3 of a
person-year, which must be subtracted from N . On the other hand, the DU = DU (x, t) deaths in

●

contributed an average of 1/3 person-years each, which must be added to the total for the interval.
Therefore, assuming uniform distributions of births and deaths, the person-years of exposure in this
interval can be estimated as

E = N − 1

3
(DL −DU ) . (E.4)

Notice that N(x, t) is equivalent to the P2 population aged x at the beginning of calendar
year t + 1 plus the DL deaths in ● , and that N(x + 1, t) is equivalent to the P1 population aged
x at the beginning of calendar year t minus the DU deaths in

●
. Therefore, we can substitute

1
2 [P2 +DL + P1 −DU ] for N̄ in equation (E.4). After simplifying, we get

E =
1

2
[P1 + P2] +

1

6
(DL −DU ) (Equation (57)),

and thus the period death rate is

Mx =
Dx

Ex
=

DL +DU
1
2 [P1 + P2] + 1

6 (DL −DU )
.

E.2.2 Period death rates and probabilities under non-uniform distributions of birth-

days and deaths

The assumption of uniformity within Lexis triangles is violated most severely in situations where
there are rapid changes in the size of successive cohorts, owing to �uctuations in the birth series
many years before. The worst situation is when a sharp discontinuity in births occurs in the middle
of one calendar year, creating a cohort that is heavy at one end and light at the other such as the
cohorts born at the start and end of the First and Second World Wars in some countries. Where
data for birth counts are available by time intervals of less than a year, our exposure estimations
account for the distribution of individuals within birth cohorts. Speci�cally, we collect data for birth
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counts by month of birth, which are used to calculate the coe�cients s1, s2, u1 and u2, de�ned on
page 30 in section 6.1.

Let b be a time at birth within a cohort, i.e., 0 ≤ b ≤ 1, and let f(b) be the corresponding
probability density function. Our formulas require two measures of the cohort birth distribution,
the mean, b̄, and variance, σ2. Since period exposures combine the experience of two cohorts, we
di�erentiate using subscripts, b̄1 and σ21 for the upper triangle,

●
, and b̄2 and σ22 for the lower

triangle, ● , (See Figure 9 for an overview). Assume (i) equal survival probabilities within cohorts,
(ii) that deaths are distributed uniformly over each lifeline within a Lexis triangle, and (iii) a
closed population. From (i) and (iii) it follows that f1(b) and f2(b) also describe the distribution of
birthdays over N(x+ 1, t) and N(x, t), respectively, in any year t over the life of the cohort.

As mentioned, we estimate the birth distribution using information on births by calendar months.
Births are then assumed to be uniformly distributed within each month. Suppose there are discrete
intervals de�ned by 0 = b0 < b1 < · · · < bn = 1. The bi are taken as the month endpoints, expressed
as a proportion of the year, e.g., b1 = 31

365 , and so forth. In general, the fraction of births in the ith

sub-interval is as follows:

fi =

∫ bi

bi−1

f(b) db for i = 1, 2, . . . , n . (E.5)

Clearly, 1 =
∑n

i=1 fi. The empirical density function, f(b), is de�ned as:

f(b) =
fi

bi − bi−1
, (E.6)

for bi−1 < b ≤ bi. For monthly data, f1 is simply the fraction of births in January. Using the
empirical f(b):

b̄ =

∫ 1

0
bf(b) db

=

n∑
i=1

fi

(
bi−1 + bi

2

)
. (E.7)

Similarly, we obtain an estimate of σ2 as follows:

σ2 =

∫ 1

0
(b− b̄)2f(b) db

=
n∑

i=1

fi ·
(
b2i−1 + bi−1bi + b2i

3

)
−

(
n∑

i=1

fi
bi−1 + bi

2

)2

. (E.8)

Let us �rst establish that the average years lived in ● (by the cohort born in year t− x) would
equal 1− b̄2, if there were no deaths. This is shown by solving the following integral:

Nx

s1 =

∫ 1

0
(1− b) f2(b) db

= 1− b̄2 . (E.9)
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Likewise, the average years lived in
●
(by the cohort born in year t− x− 1) is equal to b̄1, among

those that survive to age x+ 1 in year t:

Nx+1

u1 =

∫ 1

0
b f1(b) db

= b̄1 . (E.10)

De�ne zL and zU as the average years lived in ● and
●
, respectively by individuals that die in

those triangles.33 Assume that deaths in ● are distributed as follows:

fL(a, b) = CL · f2(b− a) , 0 ≤ a ≤ b < 1 , (E.11)

where CL is some constant chosen so that fL(a, b) integrates to 1. Thus, we assume that the density
of deaths within ● is constant along cohort lifelines yet proportional to the density of birthdays at
age x. Integrating the density function over the triangle and equating to 1, we obtain:

CL =
1

1− b̄2
,

and thus

fL(a, b) =
f2(b− a)

1− b̄2
.

For a death at (a, b) within ● , 1−b years of exposure are lost. The average amount of lost exposure
per death in the triangle, zL, is derived by solving the following integral:

x

x
x

x

a

b

zL =

∫ 1

0

∫ b

0
(1− b)fL(a, b) da db

=
1− b̄2

2
+

σ22
2(1− b̄2)

. (E.12)

Similarly for
●
, with the same assumptions, the distribution of deaths within

●
, fU (a, b), has

the following form:

fU (a, b) =
f1(b− a)

b̄1
. (E.13)

We derive zU , the average years of exposure contributed to
●

by those that die in the triangle, by

x

x
x

xa

b

solving the following integral:

33As we still assume deaths uniformly distributed over cohort lifelines within the triangle (but not between lifelines),
this quantity is also equal to the average years lost by those dying in the triangle. In the case of full uniformity
(of both births and deaths), zL and zU are both equal to 1

3
. These two quantities are also used in cohort exposure

calculations, albeit calculated using birth distribution information from the same cohort (see equation (60)).
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zU =

∫ 1

0

∫ b

0
bfU (a, b) da db

=
b̄1
2

+
σ21
2b̄1

. (E.14)

Then, the estimated exposure (in person-years lived) in the lower triangle is as follows:

EL = (1− b̄2)N(x)− zLDL

= (1− b̄2)(P2 +DL)−
(

1− b̄2
2

+
σ22

2(1− b̄2)

)
DL

= (1− b̄2)P2 +

(
1− b̄2

2
− σ22

2(1− b̄2)

)
DL

= s1P2 + s2DL , (E.15)

and exposure in the upper triangle is:

EU = b̄1N(x+ 1) + zUDU

= b̄1(P1 −DU ) +

(
b̄1
2

+
σ21
2b̄1

)
DU

= b̄1P1 −
(
b̄1
2
− σ21

2b̄1

)
DU

= u1P1 − u2DU . (E.16)

These two equations justify the de�nitions of s1, s2, u1 and u2 given in equations (53) to (56).
Thus, the total period exposure for ● equals:

E(x, t) = EL + EU = s1P1 + s2DL + u1P2 − u2DU . (E.17)

Table E.2: Implications of assuming non-uniform distributions of
deaths within Lexis triangles (at age x)

Lower triangle ● Upper triangle
●

Average age at death x+ zL x+ 1− zU
Average contribution (per death)
to exposure within triangle

zL zU

Average lost exposure (per
death) within triangle

zL zU
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E.2.3 Special case of uniform distributions of birthdays and deaths

Period exposure formulas in the case of a uniform distribution of birthdays and deaths are a speci�c
case of the more �exible method presented here. If births and birthdays occur uniformly over the
year for a birth cohort, then b̄ = 1/2 and σ2 = 1/12. Thus, it is easy to con�rm that s1 = u1 = 1

2 and
u2 = s2 = 1

6 . Following these formulas, the calculation of period exposures under the assumption
of uniformity (i.e., when birth counts by month are unavailable) can be expressed as:

E(x, t) =
P1 + P2

2
+

1

6
(DL −DU ) (Equation (57)).

The fact that equation (E.18) is a special case of equation (E.17) allows the use of a consistent
method for period exposure calculations, with a convenient simpli�ed form when information on
the age distribution within cohorts is not available.

E.3
●

Cohort death rates and probabilities

Death rates and probabilities of dying are simpler conceptually for cohorts than for periods. As
depicted in Figure 10 (main text), cohort rates and probabilities are measured over the age-cohort
parallelogram, ● , which follows the lives of individuals who turn age x in one calendar year until
their next birthday, at age x+ 1, in the following calendar year.

We assume that there is no migration and deal with the case of a closed population. This is
usually a weak assumption because the e�ects of migration on calculated rates and probabilities
are negligible as long as migratory �ows have the same direction and a similar magnitude over the
interval. The distribution of deaths within triangles is assumed to be proportional to the distribution
of birthdays within the cohort: across cohort lines within Lexis triangles deaths are assumed to be
distributed uniformly. Note that no assumptions are required on the distribution of population
counts.

We �rst present cohort exposure formulas and then show how rates and probabilities follow.
Recall the two quantities, zL and zU , given in equations (E.12) and (E.14). Here these are de�ned
similarly, but with reference to the same cohort. Cohort exposures, Ec

x, are calculated as:

Ec
x = P + zLDL − zUDU (E.18)

= P +

(
1− b̄

2
+

σ2

2(1− b̄)

)
DL −

(
b̄

2
+
σ2

2b̄

)
DU .

Assuming uniform distributions of birthdays and deaths, the cohort exposure calculation simpli�es
to the following:

Ec(x, t) = P (x, t) +
1

3
[DL(x, t− 1)−DU (x, t)] (Equation (62)).

This formula is justi�ed as follows: Consider the P individuals alive at the boundary between
the two calendar years. If there were no deaths in

●
, these P individuals would contribute a total

of P person-years of exposure over the complete age interval. However, as shown above, the DU
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deaths in
●

result in an average lost exposure of zU person-years, which must be subtracted from
P , and the DL deaths in ● contribute an average of zL person-years, which must be added to the
total for ● exposure.

Death rates follow by dividing the number of deaths by the total exposure to risk:

Mx = mx =
DL +DU

Ec
.

As re�ected in this equation, for cohorts there is no di�erence, either conceptually or empirically,
between the population death rate, Mx, and the life-table death rate, mx, assuming zero migration.

The probability of surviving from age x to age x+ 1, px, is:

px =
N(x+ 1, t+ 1)

N(x, t)
=

P

P +DL
· P −DU

P
=
P −DU

P +DL
,

where P = P (x, t + 1), DL = DL(x, t), and DU = DU (x, t + 1), as illustrated in Figure 10. Thus,
the probability of surviving from age x to age x+ 1 is a product of the fraction surviving from age
x to the end of the calendar year and the fraction surviving from the beginning of the next calendar
year to age x+ 1. This probability is the same with or without the assumptions of uniform births
or deaths. It follows immediately that

qx = 1− px =
DL +DU

P +DL

is the cohort probability of dying in the age interval [x, x+ 1).
Let ax be the average number of years lived between ages x and x + 1 by individuals who

die within this interval. Under the assumption that deaths are distributed uniformly within Lexis
triangles, the average age at death is x+ 1/3 in the lower triangle and x+ 2/3 in the upper one (see
Table E-1). It follows that

ax =
1
3DL + 2

3DU

DL +DU
.

Once again allowing for non-uniformity of births and birthdays, we obtain:

ax =
zLDL + (1− zU )DU

DL +DU
.

where the formulas for zL and zU are identical to those given earlier (equations (E.12) and (E.14)),
except that both are derived using monthly birth counts for the same cohort. Recall that, in classical
life table notation, death rates, probabilities of dying, and average years lived in the age interval
are related by the following formula:

qx =
mx

1 + (1− ax) ·mx
.

It is easy to con�rm that the cohort formulas for these three quantities, when derived (as above)
under either set of assumptions, satisfy this equation. Thus, the three quantities are mutually
consistent, even though they have been derived independently from birth and death counts and
population estimates. For cohorts, this relationship is exact, and there is no need to give preference
to either rates or probabilities in the calculation of cohort life tables.
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Appendix F Special methods used for selected populations

For the sake of comparability, we aim to follow the general principles described in this document for
all populations included in the HMD. However, exact uniformity of methods is not always possible,
because data at the required level of detail are not available in all situations. Therefore, in a few
special cases, we have developed special methods to accommodate the realities of the available
data. As of the current version of this document (dated May 31, 2007), the populations listed
below have been treated with special methods. For the most up-to-date version of this table, go
to the Special Methods link (http://www.mortality.org/Public/Docs/SpecialMethods.pdf) on
the HMD website.

Population Special method For more details:

Belarus The original death counts for all years were ag-
gregated for ages 99+. Population estimates for
almost extinct cohorts were derived using the
survival ratio method at ages 85+ years.

See the �Data Quality Issues� sec-
tion of the country-speci�c docu-
mentation

Belgium Counts of live births (1895�1923, 1919) and in-
fant deaths (1886�1955, 1958�1960) were cor-
rected to include false stillbirths. Special meth-
ods were implemented to accommodate missing
deaths for 1914-18.

See Appendices 2 and 3 of the
country-speci�c documentation

Bulgaria Population estimates were constructed for 1989�
1992 by treating o�cial estimates for 1988 as
a �pseudo-census� and then applying the inter-
censal survival method.

See the �Data Quality Issues� sec-
tion of the country-speci�c docu-
mentation

Canada Death counts were adjusted for missing infor-
mation (e.g., sex, age, year of birth) and errors
in the year of birth. In some cases, the original
death counts were aggregated by Lexis triangle
into the 1×1 format because of apparent data
quality problems.

See the �Death Count Data,
Speci�c Details� section of the
country-speci�c documentation

Finland Imputation of Lexis triangles for deaths in 1999�
2009, when the year of occurrence was not pro-
vided (only year of registration, age, sex, and
year of birth)

See Appendix 2 in the country-
speci�c documentation

France Counts of live births and infant deaths (1899�
1974) were corrected to include false stillbirths.
During the World Wars, estimates (deaths, pop-
ulation) were used to include the military pop-
ulation.

See the country-speci�c docu-
mentation
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Population Special method For more details:

Germany We used a special method to derive the inter-
censal population estimates for the period 1990�
2011.

See Appendix 2 of the country-
speci�c documentation

Germany, East
and West

We used a special method to derive the inter-
censal population estimates for the period 1987�
2011.

See Appendix 2 of the country-
speci�c documentation

Hong Kong There were a few deaths of unknown sex for
selected ages across the period covered by the
HMD (1986�2017). Within a given year and
age subgroup, deaths of unknown sex were redis-
tributed proportionately based on the observed
sex distribution of deaths where sex was known.

See NoteCode #1 in HKG-
note.pdf.

Israel The o�cial annual population estimates for
1985�1995 and 1996�2007 were adjusted using
a special method. Unlike the standard HMD
method for producing inter-censal population
estimates, this method takes into account the
distribution of net-migration across years and
cohorts within the inter-censal period.

See Appendix 2 of the country-
speci�c documentation

Italy The age distribution for death counts was esti-
mated for years 1893-94. Census counts were
adjusted for the years 1871, 1921, and 1951 to
cover the same territory as the death counts.
During the two World Wars, estimates of deaths
and population were used to include the military
population.

See the country-speci�c docu-
mentation (in particular Ap-
pendix 2)

Lithuania The survival ratio method was used for ages 85+
rather than 90+ to derive population estimates
for almost extinct cohorts. The original death
counts were aggregated for ages 99+.

See the �Population Count Data,
Speci�c Details� and �Data Qual-
ity Issues� sections of the country-
speci�c documentation

New Zealand The M	aori and Non-M	aori population counts
were adjusted for 1991�1995 to follow the older
de�nition of ethnicity. Due to the fact that
deaths in 1995 are classi�ed by a mixture of
the previous and current de�nitions of ethnic-
ity, a special adjustment factor was introduced
for M	aori and Non-M	aori deaths. Census counts
were adjusted for 1960 & 1970 to cover the de

jure (�usual resident�) population.

See Appendix 2 of the country-
speci�c documentation
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Population Special method For more details:

Norway The sex distribution for births was estimated for
the years 1846�1915.

See the country-speci�c docu-
mentation

Portugal The survival ratio method was used for ages 85+
rather than 90+ to derive population estimates
for almost extinct cohorts.

See the �Population Count Data,
Speci�c Details� section of the
country-speci�c documentation

Russia Prior to calculation of HMD estimates, i) the
original death counts for 1959�1989 were ag-
gregated for ages 99+, and ii) o�cial popula-
tion estimates in recent years were aggregated
for ages 80+. Population estimates for almost
extinct cohorts were derived using the survival
ratio method for ages 80+ rather than 90+.

See Appendix 2 of the country-
speci�c documentation

Scotland A special method was used to split population
estimates by 5-year age groups during WWI.

See the country-speci�c docu-
mentation

Spain Counts of live births and infant deaths (1930�
1974) were corrected to include false stillbirths.
The census counts were adjusted for the years
1940, 1950, and 1960 to cover the de facto pop-
ulation and the same territory as death counts.

See the country-speci�c docu-
mentation

Sweden Death counts were adjusted for the years 1863,
1865, 1868, and 1870 to match a secondary,
more reliable (but less detailed) data source.

See the �Data Sources� section of
the country-speci�c documenta-
tion

Switzerland Death counts were adjusted for females for the
year 1878.

See the �Death Count Data,
Deaths at 99+� section of the
country-speci�c documentation

Ukraine Due to data quality issues at older ages in of-
�cial statistics, population estimates in recent
years were aggregated for ages 80+. Popula-
tion estimates for almost extinct cohorts were
derived using the survival ratio method for ages
80+ rather than for ages 90+. In addition, prior
to calculation of HMD estimates, the original
death counts for 1959�1989 in ages higher than
99 were aggregated to an open interval of 99+.

See the �Data Quality Issues, Age
Heaping in Deaths� section of the
country-speci�c documentation
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Population Special method For more details:

United Kingdom During the two World Wars, for England &
Wales and for Scotland, estimates (deaths, pop-
ulation) were used to include the military pop-
ulation. For the civilian population, a special
method was used to split population estimates
by 5 year age groups during WWI and WWII.

See the country speci�c documen-
tation

United States The original mortality data are tabulated in
a mix of Lexis triangles, single-years of age
and �ve-year age groups to protect con�den-
tiality for all years 1959-2013. Population esti-
mates have been adjusted to exclude the Armed
Forces overseas (1940�1969) and the population
of Alaska and Hawaii (1950�1958). Births were
adjusted for 1959 to include Hawaii. The extinct
cohort method was used for ages 75+ (rather
than 80+) during 1933�39 because o�cial pop-
ulation estimates extend only to age 75+.

See the country-speci�c docu-
mentation
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